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Abstract
We develop tools to characterise the dynamics of open quantum systems. We start by in-

troducing the concept of action quantum speed limits (QSLs). Unlike conventional geometric
methods, these QSLs intricately depend on the instantaneous speed, offering bounds on the min-
imal time needed to connect states. The instantaneous speed along fixed trajectories is shown
to be an important and optimisable degree of freedom, as exemplified through the thermalising
qubit case. Beyond discussing the feasibility of geometric QSLs, we also critically examine their
interpretation in terms of different metric choices. It is revealed that these open-system QSL times
provide indications of optimality concerning geodesic paths, rather than being strict minimal time
indicators.

Distinguishability, based on distance metrics employed in deriving QSLs (in particular the
Fisher information), is also the key concept in the field of metrology. We consider the use of open
system dynamics as a model to explore parameter estimation. We investigate how the presence
of correlation between measurement results affects the Fisher information. These correlations
are introduced through a sequential measurement scheme, where the same probe is measured
multiple times in succession without allowing for equilibration. We prove that, for there to be any
advantage in precision as a result of these correlations, there must be information encoded into the
system-environment interaction term related to the parameter that we are trying to estimate. To
emphasise this, we consider the specific case of temperature estimation where the thermalisation
rate of the probe contains additional information about the temperature. The sequential scheme
can be viewed as a form of collisional quantum thermometry, which further allows additional
freedoms in the protocol, e.g. by introducing stochasticity in the waiting time between collisions.
We establish that incorporating randomness in this manner leads to a significant expansion of the
parameter range for achieving advantages over typical equilibrium approaches to thermometry.
Intriguingly, we demonstrate that in certain settings optimal measurements can be performed
locally, highlighting the limited role of genuine quantum correlations in this advantage.

Finally, we delve into the statistics of the work done on a quantum system via a two-point
measurement scheme. The Shannon entropy of the work distribution is shown to possess a general
upper bound tied to initial diagonal entropy and a distinct quantum term associated with the
relative entropy of coherence. This approach is shown to capture signatures of underlying physics
across diverse scenarios. In particular, through an in-depth exploration of the Aubry-André-Harper
model, we illustrate how the entropy of the work distribution provides a useful tool for characterising
the localisation transition. We further explore the use of the entropy of the work distribution as a
tool for identifying the mobility edge in a generalised Aubry-André-Harper model.

Collectively, these results provide a toolbox to assess the optimality, either in terms of the
dynamical paths taken, utility for metrological tasks, or ability to spotlight relevant physical prop-
erties of the model, for the dynamics of complex quantum systems.
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Chapter 1

Introduction

Quantum mechanics, at its most fundamental level, deals with the evolution of vectors in a
Hilbert space. These vectors evolve in time via unitary evolution. This evolution is completely
time reversible and can be achieved by applying the conjugate transpose of the unitary. At the
quantum level there is no arrow of time, no straightforward way to distinguish between the past and
the future. Yet, for humans, we remember the past but can only predict the future, there is a clear
asymmetry there. Human beings are finite creatures, we interact with the world via our senses.
When our senses are not sufficient or not accurate enough, we build measurement devices. For
example, we have thermal imaging devices that can detect wavelengths of light outside the visible
range and allow us to see at night. We have precise thermometers that allow us to distinguish
between temperatures that are far too fine for our own senses to differentiate. We have also
built measurement devices that can measure quantities our own senses are incapable of detecting
such as a magnetometer for measuring magnetic field strength or a Geiger counter for detecting
the products of radioactive decay. Devices like these give us access to tiny length scales where
quantum effects dominate. One crucial component of all measuring devices, humans included, is
that information is lost in the measurement process. We are not Laplace’s demon, and neither
is the measurement device, when we interact with a system we, in turn, change the system and
become part of a larger, interconnected system. It is interactions and correlations between tiny
systems that eventually lead to all the phenomena of everyday life [5].

The concept of open quantum systems is where we can first start to see these properties
appear and the first hints of time asymmetry start to emerge. Open quantum systems lean into
the fact that our measurements only give us partial information about our system and there are
multiple configurations of the system that could have resulted in that outcome. The theory of open
quantum systems allows us to assign a probability to each of these configurations. This formalism
combines the concept of superposition of quantum states with classical probabilities that arise from
incomplete information. Understanding the transition between quantum and classical physics has
been a topic of interest for a long time but only in recent years has significant progress been made
with quantum thermodynamics [6] investigating the appearance of an arrow of time from time
reversible unitary dynamics. Additionally, Quantum Darwinism [7] aims to explain how quantum
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states, which are impossible to duplicate [8], can become classical states that all observers agree
about.

All these results rely on the concept of open quantum systems. A common theme through-
out this thesis will be understanding this connection between superposition and probability, and
quantifying their effects on state manipulation, parameter estimation and thermodynamic quan-
tities. In Chapter 2 we look at the concept of the distance between pure quantum states and
show that it is related to the distance between classical probability distributions. This observation
allows us to generalise the notion of distance to open quantum systems. We use these distance
measures to put fundamental limits on the time that it takes to evolve from one quantum state to
another. These distance measures also play a crucial role in quantum metrological settings, where
the distinguishability between quantum states allows us to rigorously determine the ability for a
quantum system to act as a precise quantum sensor. We explore this in the context of an open
system acting as a probe in Chapter 3. At the end of the day, measurement results will always
be classical bits of information because humans need to understand them. Still, quantum systems
provide us with new tools to gain additional precision in our measurements over classical systems.
Finally, Chapter 4 considers alternative tools to characterise a quantum evolution. We look at the
thermodynamic quantity of work and see that the entropy of the work distribution can be split
into a classical and a quantum component. The quantum component proves to be a useful tool
for capturing key features of quantum systems including phase transitions and avoided crossings.

One other common theme seen throughout the thesis is the interplay between theory, simula-
tion, and experiment. It is often easy, as a theorist to get caught up in proving the latest theorem
and lemma or deriving a new, marginally tighter lower bound without stopping to think of the
implications in practice. This is a place where simulations can be effective, simulations allow us to
test our theories and quantify the size of effects. Simulations also have some pitfalls, in real world
experiments there can often be limitations in experimental equipment or the addition of noise
that is not always present in simulations. These are common concerns that we try to navigate
throughout the thesis.

While throughout the thesis we will introduce important concepts and techniques within the
particular contexts that they are needed, nevertheless there are a few overarching tools that will be
recurring related to the simulations of quantum dynamics and which we introduce in the remainder
of this Chapter.

1.1 Closed quantum systems

A quantum system is completely described by its state vector, which we will denote using Dirac
notion as |ψ⟩. State vectors are unit vectors in a complex Hilbert space, H , i.e. ⟨ψ|ψ⟩ = 1,
where ⟨ϕ|ψ⟩ is the inner product on H that maps the ordered pair of vectors {|ϕ⟩ , |ψ⟩} to C [9].
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The time evolution of quantum states in Hilbert space is described by the Schrödinger equation,

iℏ
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ , (1.1)

where H is the time-independent Hamiltonian of the system and ℏ is the reduced Planck constant.
To calculate the state vector at any time we can simply integrate Eq. (1.1) to give

|ψ(t)⟩ = exp
[
− i(t− t0)H

ℏ

]
|ψ(t0)⟩ . (1.2)

This means that we can express the time evolution of the state using the operator,

U(t, t0) ≡ exp
[
− i(t− t0)H

ℏ

]
. (1.3)

We can immediately see that U is unitary since H is Hermitian. It is possible to change the
Hamiltonian by applying, for example, an external magnetic field. In this case the Hamiltonian can
be time dependent and the solution to the Schrödinger equation is a time-ordered exponential [10]

U(t, t0) = T← exp
[
− i

ℏ

∫ t

t0
dsH(s)

]
. (1.4)

Properties of a quantum system that can be measured are known as observables. Observables are
Hermitian operators that perform a linear map on H . An observable, A, can be decomposed as

A =
∑
j

ajPj (1.5)

where Pj is an orthogonal projection onto the span of the eigenvectors with eigenvalue aj . When
the observable, A, is measured, the outcome aj is obtained with a probability given by

p(aj) = ⟨ψ|Pj |ψ⟩ . (1.6)

During this measurement, the system is projected onto the eigenspace of A and the system state
after obtaining measurement result aj is

|ψ⟩ → Pj |ψ⟩√
p(aj)

. (1.7)

3



The average value of the measurement result can be written as

E(A) =
∑
j

ajp(aj) (1.8)

=
∑
j

aj ⟨ψ|Pj |ψ⟩

= ⟨ψ|A|ψ⟩ ≡ ⟨A⟩.

Sometimes it is useful to describe a quantum system as an ensemble of orthogonal states, |ψi⟩,
with respective probabilities pi, such as the state of the system after a measurement has been
performed but before the measurement is read. It is most convenient to represent this ensemble
as a density matrix,

ρ =
∑
j

pj |ψj⟩⟨ψj | . (1.9)

By definition, the density matrix is Hermitian and has a trace of 1. Using Eq. (1.1) it is simple to
derive an equivalent equation for the density matrix

iℏ
d

dt
ρ =

∑
j

iℏpj
(
d

dt
|ψj⟩

)
⟨ψj | + |ψj⟩

(
d

dt
⟨ψj |

)
(1.10)

=
∑
j

pjH |ψj⟩⟨ψj | + |ψj⟩⟨ψj |H

= [H, ρ] .

This is known as the Von-Neumann equation. When the ensemble contains more than one state
vector, the corresponding density matrix is referred to as being mixed. States that are not mixed are
referred to as pure. The average value or expectation value of a measurement on the observable,
A, can be written in density matrix formulation as

⟨A⟩ = Tr [Aρ] . (1.11)

1.1.1 Kraus Operators

Another scenario where the density matrix formulation is necessary is when we have two quantum
systems coupled together. We will call one of them S, with Hilbert space HS , and the other, the
environment, E, with Hilbert space HE . Let us assume that the system and environment start in
a pure product state,

|ψ⟩⟨ψ|S ⊗ |0⟩⟨0|E . (1.12)

where |0⟩ can be any pure state on HE and we can construct an orthonormal basis of HE , {|j⟩E},
such that |0⟩ is an eigenvector. The evolution of the system and environment is described by a
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unitary evolution USE

|ψSE⟩⟨ψSE | = USE (|ψ⟩⟨ψ|S ⊗ |0⟩⟨0|E)U †SE . (1.13)

We can rewrite this in terms of the environment basis {|j⟩E}

|ψSE⟩⟨ψSE | =
(∑

k

IS ⊗ |k⟩⟨k|E

)
USE (|ψ⟩⟨ψ|S ⊗ |0⟩⟨0|E)U †SE

∑
j

IS ⊗ |j⟩⟨j|E

 (1.14)

=
∑
k

∑
j

(IS ⊗ ⟨k|E)USE (IS ⊗ |0⟩E) (IS ⊗ ⟨0|E)U †SE (IS ⊗ |j⟩⟨j|E) |ψ⟩⟨ψ|S ⊗ |k⟩⟨j|E

=
∑
k

∑
j

(
Kk |ψ⟩⟨ψ|SK

†
j

)
⊗ |k⟩⟨j|E ,

where IS and IE are the identity operators acting on HS and HE respectively. We have defined
the so-called Kraus operator on HS [11],

Kk = (IS ⊗ ⟨k|E)USE (IS ⊗ |0⟩E) . (1.15)

Kraus operators are not unique as they can be defined for any orthogonal basis on HE . The Kraus
operators satisfy the following property,

∑
k

K†kKk =
∑
j

(IS ⊗ ⟨0|E)U †SE (IS ⊗ |k⟩E) (IS ⊗ ⟨k|E)USE (IS ⊗ |0⟩E) (1.16)

= (IS ⊗ ⟨0|E)U †SE

(
IS ⊗

(∑
k

|k⟩⟨k|E

))
USE (IS ⊗ |0⟩E)

= (IS ⊗ ⟨0|E)U †SEUSE (IS ⊗ |0⟩E)

= IS

If we want to measure an observable, A, that acts only on HS we can do that by measuring the
observable A⊗ IE on HSE

⟨A⟩ = ⟨ψSE | (A⊗ IE) |ψSE⟩ (1.17)
= Tr [(A⊗ IE) |ψSE⟩⟨ψSE |]

=
∑
k

∑
j

Tr
[(
AKk |ψ⟩⟨ψ|SK

†
j

)
⊗ |k⟩⟨j|E

]
=
∑
k

∑
j

Tr
[
AKk |ψ⟩⟨ψ|SK

†
j

]
Tr |k⟩⟨j|E

= Tr

A
∑

j

Kj |ψ⟩⟨ψ|SK
†
j


= Tr [AρS ]
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where we have defined
ρS =

∑
j

Kj |ψ⟩⟨ψ|SK
†
j , (1.18)

which is often called the reduced state of S. The reduced state can also be found by taking the
partial trace over the degrees of freedom of the environment,

ρS = TrE [|ψSE⟩⟨ψSE |] (1.19)
=
∑
j

(IS ⊗ ⟨j|E)USE (|ψ⟩⟨ψ|S ⊗ |0⟩⟨0|E)U †SE (IS ⊗ |j⟩E)

≡ E(|ψ⟩⟨ψ|S).

The map E(·) is known as a completely positive trace preserving (CPTP) map. This tells us that
even when the system-environment state is initially in a pure product state, the state of the system
after interaction can only be expressed using a density matrix.

We can see, by analysing Eq. (1.14) that performing a projective measurement on E in the
basis {|j⟩} will leave S in the reduced state

ρjS =
Mj |ψ⟩⟨ψ|SM

†
j

p(j) , (1.20)

where

p(j) = Tr
[
Mj |ψ⟩⟨ψ|SM

†
j

]
(1.21)

= ⟨ψ|SMjM
†
j |ψ⟩S

= ⟨ψ|S Ej |ψ⟩S

We can think of this as a more general kind of measurement on HS , known as a positive operator-
valued measure (POVM). A POVM, most generally, can be defined as a set of positive, Hermitian
operators that sum to unity. We can define the probability of measuring Ej on any state ρ

p(j) = Tr [EjρS ] . (1.22)

Neumark’s theorem [12] shows that any POVM on HS can be realised as a projective measurement
on separate Hilbert space HB in exact analogy with Eq. (1.14).

1.1.2 Quantum master equations

The Hamiltonian that generates USE can be broken up into three parts,

H(t) = HS ⊗ IE + IS ⊗HE +HI(t), (1.23)
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HS is the system Hamiltonian, HE is the environment Hamiltonian and HI describes the system-
environment interaction. It can be incredibly difficult to model the evolution of the reduced system
state, ρS , because, in principle, it requires keeping track of the entire system-environment state at
all times. However, we can apply a number of approximations in order to significantly simplify this
problem. The first assumption we make is that there is weak coupling between the system and the
environment. This implies that the effect of the system on the environment is small. Therefore,
the combined system environment state can be approximated as a product state

ρSE ≈ ρS(t) ⊗ ρE . (1.24)

This is often referred to as the Born approximation. The next approximation we apply is the Markov
approximation. The Markov approximation is valid when the environmental correlations decay
before the reduced state of the system has changed significantly in the interaction picture. The
final approximation required is the rotating wave approximation. The rotating wave approximation
holds when the timescale of the system Hamiltonian, HS , is much shorter than that of the
interaction Hamiltonian, HI . The exact mathematical details of these approximations can be
found in Ref. [10]. The result of these approximations allow us to write the map describing the
system evolution in the form

Et1 ◦ Et2(·) = Et1+t2(·). (1.25)

This is known as the Markov semi-group property [10]. The semi-group property allows us to
express the map Et(·) in exponential form

Et(·) = exp (Lt) (·) (1.26)

giving a differential equation for the evolution of the reduced state of S

d

dt
ρS(t) = L(ρS(t)). (1.27)

This allows us to expand L in terms of E in the limit [10]

L(ρS) = lim
ϵ→0

1
ϵ

(Eϵ(ρS) − ρS)) (1.28)

Any operator on HS can be expressed in a basis of orthonormal operators Ci on HS that satisfy
the relations,

Tr
[
C†iCj

]
= δij (1.29)

A =
N2∑
i=1

Ci Tr
[
C†iA

]
. (1.30)
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We can expand the Kraus operators, and subsequently E in this basis, leading to the representation,

Et(ρS) =
N2∑
i,j=1

cij(t)CiρSC†j (1.31)

with
cij(t) =

∑
k

Tr
[
CiK

†
k

]
Tr
[
KkC

†
j

]
. (1.32)

By choosing CN2 = 1√
N

IS we can sub Eq. (1.31) into Eq. (1.28) to get a closed form for L [10]

L(ρS) = −i [HS , ρS ] +
N2−1∑
i,j=1

aij

(
CiρSC

†
j − 1

2
{
C†jCi, ρS

})
(1.33)

where
aij = lim

ϵ→0

cij(ϵ)
ϵ

. (1.34)

Then since the matrix (cij) is positive, (aij) is too, and can therefore be diagonalised to give the
standard form of the Lindblad master equation,

L(ρS) = −i [HS , ρS ] +
N2−1∑
j=1

γj

(
LjρSL

†
j − 1

2
{
L†jLj , ρS

})
, (1.35)

which will be a recurring tool, particularly in Chapters 2 and 3.
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Chapter 2

Action Quantum Speed Limits

Time has always proved to be a tricky concept in physics. Its intrinsic directionality, commonly
quantified through the notion of entropy production, allows us to uniquely define a “before”
and an “after”, and therefore time dictates the evolution of a system, i.e. its transformation
between different configurations (or states). Despite its contentious nature, time still appears as
a coordinate in all of our most fundamental theories, including quantum mechanics. The theory
of quantum computation, for one, considers time a key resource to optimize, since it relates to
the number of elementary computational operations that can be performed [13]. A basic question
naturally arises: Is there a lower bound on the time it can take to transform between a given initial
and final target states? This is the questions that we will explore in this Chapter. Sections 2.1 to
2.3.1 represent a summary and expansion on known results in the field, while the remainder of the
Chapter contains original results adapted from Ref. [1], mainly derived by me with the guidance
of collaborators.

2.1 Introduction

In thermodynamics a slow, continuous expansion of a gas will result in a different final state to a
series of fast expansions with a waiting time in between, even if the total process time and total
expansion are the same [14]. When dealing with continuous phase transitions, the Kibble-Zurek
mechanism tells us that the density of topological defect formation depends on the instantaneous
speed at which the control parameter is varied across the phase transition [15, 16]. In quantum
control it is common for the size of the control pulse to tend to 0 at both end points, this is
useful for practical reasons, but also helps to minimise the effects of noise and timing errors [17].
The common theme among all these processes is, they depend on the instantaneous speed of
the process. Quantum speed limits (QSLs) place a fundamental limit on the minimal time that
a system can evolve from one quantum state to another. They have been applied to all the
above problems [18–20] but as we will see, most quantum speed limits depend only on the path
taken between the initial and final states and are insensitive to the instantaneous speed along
that path. We derive a new family of QSLs that are sensitive to this degree of freedom which we
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call action QSLs [1]. This is explicitly shown in a paradigmatic example of a qubit thermalizing
with an environment modelled using a generalized amplitude-damping channel (GADC). Due to
their construction, finding the best way to traverse a path is naturally suited to be tackled with
quantum optimal control theory [21].

The chapter is organized as follows. First, we will give a brief background and history of the
inspiration for QSLs and detail their original derivations. Secondly, we will introduce the framework
of quantum information geometry and show how it can be applied to the space of density matrices.
We will then use this framework to explore the concept of QSLs in open quantum systems. Then,
we will present the results of the publication [1] in which we introduce action QSLs as an alternative
to the geometric approach and establish that they provide consistent bounds when the path is
optimally traversed. We will show how it is possible to use optimal control techniques to find
the optimal solution to these action QSLs. Finally, we will detail how these results relate to the
broader field of QSLs and to other fields such as quantum thermodynamics.

2.1.1 Uncertainty Relations

Putting bounds or limitations on complex physical processes is a common thread of investigation
in all areas of science. In quantum mechanics, these bounds appear not just at a practical level,
but at a fundamental level. In his seminal paper [22] Heisenberg used the theory of the Compton
effect to argue that there is an uncertainty principle for position and momentum observables

∆x∆p ≳ ℏ. (2.1)

Heisenberg also proposed a heuristic argument based on classical canonical variables that there
should be a similar principle for energy and time operators

∆E∆t ≳ ℏ. (2.2)

Soon after, Robertson derived a more solid bound related to non-commuting observables [23].
Robertson used that fact that the variance of any Hermitian operator O can be written as a
symmetric inner product, ∆O2 = ⟨O2⟩ − ⟨O⟩2 = ⟨ψ| (O − ⟨O⟩)(O − ⟨O⟩) |ψ⟩. Then by applying
the Cauchy-Schwarz inequality,

⟨u, u⟩⟨v, v⟩ ≥ |⟨u, v⟩|2, (2.3)

to two Hermitian operators A and B we get

∆A2∆B2 ≥ |⟨AB +A⟨B⟩ +B⟨A⟩ + ⟨A⟩⟨B⟩⟩|2. (2.4)
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Then we do the same with A → −B and B → A, take the square root and add each together to
get

2∆A∆B ≥ |⟨AB +A⟨B⟩ +B⟨A⟩ + ⟨A⟩⟨B⟩⟩| + |⟨−BA−B⟨A⟩ −A⟨B⟩ − ⟨B⟩⟨A⟩⟩| (2.5)
≥ |⟨AB −BA⟩| = |⟨[A,B]⟩|,

where the second step is a consequence of the triangle inequality. This inequality is much more
powerful than the original uncertainty principles as it allows us to obtain uncertainty relations
between any two observables. The variances in Eq. (2.5) are best thought of as statistical prop-
erties of measurements performed on an ensemble of identically prepared states rather than a
simultaneous measurement of both observables [24]. We can now derive an exact version of the
position-momentum uncertainty principle from the fact that their canonical commutation relation
is given by [x, p] = iℏ,

∆x∆p ≥ ℏ
2 . (2.6)

As powerful as Eq (2.5) is, not every quantity of interest can be associated with a specific operator.
In particular, time has always been a controversial issue in quantum mechanics [25]. Many modern
quantum mechanics textbooks tell us that time and space are treated differently in quantum
mechanics, space is an operator and time is a parameter [26]. But this misunderstanding stems
from the failure to distinguish between the position variable of a particle, and the space coordinate
as it appears in relativity or classical mechanics [27–29]. Indeed, this caused some problems with
defining the position operator in relativistic quantum mechanics [30]. So, we might want to define
in analogy to the position operator, a time operator. We want an operator t and a corresponding
canonical momentum η that satisfy,

[η, H] = 0, [t, H] = iℏ, (2.7)

because this would give us the relation

∂⟨t⟩
∂t

= i

ℏ
⟨[H, t]⟩ = 1. (2.8)

If we want the spectrum of the time operator to be continuous and span the entire real axis, then
the spectrum of the Hamiltonian must also span the entire real axis, but this is not the case for
many physically relevant systems [29]. This just means that in such systems there is no time
operator or there is only a cyclic or discrete approximation of the time operator. This fact has
sparked a recent resurgence in the field of quantum clocks [31]. In fact, it is likely impossible to
create a perfect clock at finite power [32].
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2.1.2 Mandelstam-Tamm Bound

The first major progress in understanding how to correctly interpret the energy time uncertainty
principle came from the work of Mandelstam and Tamm [33] (MT). They note that one common
interpretation of the energy time uncertainty relation derives from the relationship between energy
and frequency for monochromatic light. This energy cannot be identified with the observable
associated with energy in non-relativistic quantum mechanics [33], the Hamiltonian. In order to
derive an uncertainty relation based on the Hamiltonian they simply considered the Robertson
uncertainty bound (2.5) with A = H, the Hamiltonian, and B = |ψ0⟩⟨ψ0|, the projector onto
the initial state. The expectation values are calculated as ⟨O⟩ = ⟨ψt|O |ψt⟩. By applying the
von-Neumann equation,

[H,O] = −iℏdO
dt

(2.9)

on the right-hand side, we get,

∆H
√

⟨B⟩ − ⟨B⟩2 = ℏ
2

∣∣∣∣d⟨B⟩
dt

∣∣∣∣ , (2.10)

using the fact that B2 = B. We can then rearrange and integrate both sides to obtain,∫ τ

0
dt∆H ≥ ℏ arccos | ⟨ψτ |ψ0⟩ | (2.11)

Then by assuming a time-independent Hamiltonian we find that the minimum evolution time
required for a quantum system to unitarily evolve from an initial pure state |ψi⟩ to an orthogonal
final state |ψf ⟩ is given by,

τ ≥ τMT
QSL= π

2
ℏ

∆H (2.12)

This formulation is essentially a reordering of the energy-time uncertainty relation where ∆t is
replaced by the time interval τ . Mandelstam and Tamm relate this bound to the broadening of
spectral lines by defining a minimum “half-life” time of a given state [33]. This re-interpretation
of the energy-time uncertainty relation has been termed the quantum speed limit (QSL) time.
This equation puts a fundamental limit on a number of quantum processes such as the rate of
information transfer [34], the rate of entropy production [35], the rate of information processing [36]
and the fastest optimal control protocols [37].

It is easy to see from equation (2.11) that the results can be generalised to non-orthogonal
states [38,39] and time-dependent Hamiltonians [40]. In this scenario the minimum evolution time
is bounded by

τ ≥ τQSL = ℏLA(|ψ0⟩ , |ψτ ⟩)
∆Eτ

. (2.13)

where LA(|ψ0⟩ , |ψτ ⟩) = arccos |⟨ψ0|ψτ ⟩| is the Bures angle for pure states and ∆Eτ =
∫ τ

0 dt∆H is
the time averaged variance of the Hamiltonian. Anandan and Aharonov [40] showed, importantly,
that Eq. (2.13) can be understood from a purely geometric perspective as a consequence of the
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properties of the Fubini-Study metric on the Riemannian manifold of quantum states. In particular,
they showed that in this metric, the geodesic length is given by the Bures angle and the path length
of any unitary dynamics is given by ∆Eτ/ℏ. Therefore Eq. (2.13) simply follows from the fact
that the geodesic length is always smaller than the actual path length.

2.1.3 Margolus-Levitin Bound

In quantum computation one measure of speed is the number of distinct, i.e. orthogonal, states
that a system passes through in a given time. Margolus and Levitin [41] (ML) were able to put
a bound on this speed which is remarkably similar to the MT bound. They started by expanding
the initial state, |ψ0⟩ =

∑
n cn |En⟩, in the energy basis of the Hamiltonian H =

∑
nEn |En⟩⟨En|,

we also re-normalise so that E0 = 0. Then, by applying the Schrödinger equation to this initial
state we can write the time-evolved state as

|ψt⟩ =
∑
n

cn exp
(−iEnt

ℏ

)
|En⟩ . (2.14)

By considering the real part of the overlap between the initial state and the time-evolved state,
St ≡ ⟨ψ0|ψt⟩ =

∑
n |cn|2 exp(−iEnt/ℏ), and applying the inequality, cos(x) ≥ 1−2/π(x+sin(x)),

which holds for x ≥ 0,

Re(St) =
∑
n

|cn|2 cos(Ent/ℏ) (2.15)

≥
∑
n

|cn|2
[
1 − 2

π

(
Ent

ℏ
+ sin

(
Ent

ℏ

))]
= 1 − 2

π

⟨H⟩
ℏ
t+ 2

π
Im(St).

When the initial and final state are orthogonal we have Sτ = 0, which implies that both Re(Sτ ) = 0
and Im(Sτ ) = 0. From this we can rearrange to get the ML bound

τ ≥ τML
QSL = π

2
ℏ

⟨H − E0⟩
. (2.16)

The crucial difference here is that the bound depends on the mean energy ⟨H⟩ of the initial state
instead of the variance ∆H. Extending the ML bound, even to just non-orthogonal pure states,
has proven to be a real challenge. Giovannetti et al. [42, 43] proposed an extension to the ML
bound in the form

τ ≥ α(ϵ) ℏ
⟨H − E0⟩

, (2.17)

with ϵ = |Sτ |2. They were able to derive implicit upper and lower bounds on α(ϵ) and showed
numerically that these bounds were approximately equal. Hörnedal, Niklas and Sönnerborn [44]
showed analytically that the α(ϵ) derived by this upper and lower bound is exact and is always
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saturable. The function can be defined as

α(ϵ) = min
z2≤ϵ

1 + z

2 arccos
(

2ϵ− 1 − z2

1 − z2

)
. (2.18)

The minimum value of z can be defined implicitly by

arccos
(

2ϵ− 1 − z2

1 − z2

)
= 2z

1 − z

√
1 − ϵ

ϵ− z2 . (2.19)

Recently a dual version of the ML bound was also derived [45], it takes the form,

τ ≥ α(ϵ) ℏ
⟨Emax −H⟩

. (2.20)

Understanding and developing on the MT and ML bounds has been the focus of sustained work. A
number of papers have focused on expanding the geometric interpretation of these results [46–50]
and extending them to mixed states [51, 52]. The MT and ML bounds have also been used to
investigate the speed of quantum control [53–55], the effect of correlations on evolution time [56–
58], and many other quantum phenomena [59–63].

2.1.4 Saturating QSL Bounds

Having fundamental bounds on the evolution time of your system is important, but it is equally
important to understand if and when those bounds can be achieved. For the MT bound let us
start by writing the Hamiltonian in the energy basis H =

∑
k Ek |Ek⟩⟨Ek|, we can write any pure

state in this basis so we have, |ψ0⟩ =
∑
k ck |Em⟩ and |ψt⟩ =

∑
k cke

−iEkt/ℏ |Ek⟩, we can now
calculate the overlap

|St|2 = |⟨ψ0|ψt⟩|2 (2.21)
=
∑
k,l

|ck|2|cl|2e−i(Ek−El)t/ℏ

=
∑
k,l

|ck|2|cl|2 cos(Ek − El)t/ℏ.

The final line follows from the fact that |St|2 is real. Levitin and Toffoli [64] showed that the MT
bound can be derived in an analogous way to the ML bound by applying a trigonometric inequality,

cosx ≥ 1 − 2
π2 (2x sin x− x2), (2.22)
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with equality for x ∈ {−π, 0, π}. So, applying this to Eq. (2.21) we get

|St|2 ≥ 1 − 4
π2

(∑
k,l

|ck|2|cl|2(Ek − El)(t/ℏ) sin(Ek − El)t/ℏ (2.23)

+ 1
2
∑
k,l

|ck|2|cl|2(Ek − El)2(t/ℏ)2
)
.

If we look at the first term in the brackets we see that it is simply td(|St|2)
dt and since we know

that |St|2 is non-negative then its derivative must be zero whenever |St|2 = 0. Next we calculate
the variance of the Hamiltonian,

∆H2 = ⟨H2⟩ − ⟨H⟩2 =
∑
k

|ck|2E2
k −

(∑
k

|ck|2Ek

)2

(2.24)

= 1
2
∑
k

|ck|2E2
k + 1

2
∑
l

|cl|2E2
l −

∑
k,l

|ck|2|cl|2EkEl (2.25)

= 1
2
∑
k

|ck|2Ek

(
Ek −

∑
l

|cl|2El

)
+ 1

2
∑
l

|cl|2El

(
El −

∑
k

|ck|2Ek

)
(2.26)

= 1
2
∑
k,l

|ck|2|cl|2(Ek − El)2. (2.27)

So now we can sub this into Eq. (2.23) and by choosing a time τ such that |Sτ |2 = 0 we get

0 ≥ 1 −
(2τ∆H

πℏ

)2
. (2.28)

We can see that by rearranging this we can exactly recover the MT bound in Eq. (2.12). Now, in
order to saturate this inequality, for every term in Eq. (2.21) we have to either saturate Eq. (2.22)
or have one of |ck|2 or |cl|2 equal to zero. Therefore, if |ck|2 ̸= 0 and |cl|2 ̸= 0 we need
(Ek − El)t/ℏ ∈ {−π, 0, π}. So, this means that our initial state must be a superposition of
only two energy levels. In principle, we could have additional energy levels that are degenerate,
but we know that any linear combination of degenerate eigenstates is also an eigenstate with the
same eigenvalue. In order to saturate the MT bound we also need |S(t)|2 = 0, so subbing this
superposition into Eq. (2.21) we get

0 = |c−|4 − |c−|2|c+|2 + |c+|4 (2.29)
|c−|2 = |c+|2 (2.30)
c− = e−iϕc+. (2.31)
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Then using the fact that |c−|2 + |c+|2 = 1 we can write the initial state as

|ψ(0)⟩ = 1√
2

(
|E−⟩ + e−iϕ |E+⟩

)
. (2.32)

Therefore, in order to saturate the MT bound our initial state must be in an equal superposition of
two energy eigenstates. Alternatively, we could think of some initial state |ψ⟩ and an orthogonal
final state

∣∣∣ψ⊥〉, then the Hamiltonian that saturates the MT bound must have the eigenstates
of the form,

|E−⟩ = 1√
2

(
|ψ⟩ + e−iϕ

∣∣∣ψ⊥〉) ; |E+⟩ = 1√
2

(
|ψ⟩ − e−iϕ

∣∣∣ψ⊥〉) . (2.33)

As mentioned earlier, Anandan and Aharonov [40] proved that the evolution path that saturates
the MT bound can be thought of as a geodesic path on a Riemannian manifold. This means that
the path between two orthogonal states is also a geodesic path for all the intermediate states.
This, combined with that fact that if we have two arbitrary pure quantum states, |ψ⟩ and |φ⟩, we
can always decompose |φ⟩ as,

|φ⟩ = cos θ |ψ⟩ + sin θeiϕ
∣∣∣ψ⊥〉 , (2.34)

tells us that in order to saturate the MT bound (2.13) between any two pure states |ψ⟩ and |φ⟩ the
Hamiltonian must have eigenvectors of the form in Eq. (2.33). This was also proved by Brody et.
al. [48] using a slightly different method.

The inequality cos(x) ≥ 1 − 2/π(x + sin(x)) used to define the ML bound also happens to
obtain equality for x = 0 or x = π. Levitin and Toffoli [64] used this fact to show that, in
exactly the same way as for the MT bound, the ML bound is also saturated when the initial
state is of the form in Eq. (2.32). Therefore, although the MT and ML bounds are not always
equal, they are both saturated using the Hamiltonian defined in Eq. (2.33). Interestingly, this only
applies for orthogonal states since the generalised ML bound, Eq. (2.17), is not a geodesic bound,
therefore, intermediate states do not necessarily share the same optimal path. Similarly, the dual
ML bound in Eq. (2.20) is also not saturable at the same time as either the MT or ML bound for
non-orthogonal states.

2.1.5 Open System QSLs

Extending the notion of QSLs to open quantum systems has not been straightforward. A number
of different methods have been tried. Perhaps the most common approach has been to take
inspiration from the derivation of the ML bound by taking a distance measure between quantum
states and applying an inequality, such as the triangle or Cauchy-Schwarz, to its time derivative [65–
76]. This approach generally provides simpler bounds but often at the cost of not being saturable
for most initial and final states.

Another approach has been to take inspiration from the work of Anandan and Aharonov [40] on
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the MT bound and derive a geometric speed limit on the space of open quantum systems [77–85].
One problem that this approach runs into is that there are infinitely many possible Riemannian
metrics that can be defined on the space of open quantum systems [78,86,87]. Additionally, these
speed limits are not simultaneously saturable in general. This has led to a lot of confusion in the
field over how to choose what speed limit to use.

There has also been a lot of interest in deriving speed limit like bounds for specific kinds of
systems such as ultracold gases [88], continuous variable systems [89], thermal states [90] and
macroscopic systems [91]. Other papers have made use of these QSLs to shed light on concepts
such as non-Markovianity [92,93], irreversibility [94], optimal transport [95], quantum batteries [96]
and quantum control [55, 97, 98]. More detail on all this and more can be found in the following
reviews on the subject [99,100].

2.2 Quantum information geometry

We now outline some of the technical details that underpin the derivation of geometric approaches
to defining QSLs. Information geometry provides us with the tools to establish metrics from which
families of QSLs follow.

In classical information theory, a real-valued random variable X : Ω → R is a function that
maps from a space of possible outcomes, ω ∈ Ω, to the real line. Each of these possible outcomes
occurs with probability p(ω). We can calculate the correlation between two real-valued random
variables X and Y as,

Covp(X,Y ) =
∑
ω∈Ω

(X(ω) − Ep(X))(Y (ω) − Ep(Y ))p(ω), (2.35)

where Ep(X) =
∑
ω∈ΩX(ω)p(ω) is the expectation value of the random variable X. This is

usually referred to as the covariance of X and Y . We get the standard definition of covariance by
setting p(ω) = 1/|Ω|, where |Ω| is the number of elements in Ω. The covariance of X with itself
Covp(X,X) = σ2

p(X) is equal to the variance of X.
We can also define the inner product in the space of real-valued random variables as ,

⟨A,B⟩p =
∑
ω∈Ω

A(ω)B(ω)p(ω). (2.36)

It is easy to see then that,

Covp(X,Y ) = ⟨(X(ω) − Ep(X)), (Y (ω) − Ep(Y ))⟩p. (2.37)

So, when A and B have zero expectation value, (2.36) can be thought of as a measure of the
correlation between the two variables [101]. If we consider the set of probability distributions pθ
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parametrized by a single real number θ then we can define the logarithmic derivative,

d log pθ(ω)
dθ

|θ=θ0 = 1
pθ0(ω)

dpθ(ω)
dθ

|θ=θ0 . (2.38)

The Fisher information is defined as the variance of the logarithmic derivative, but the expectation
of the logarithmic derivative is zero so we can also write it as,

Fθ =
〈
d log pθ(ω)

dθ
,
d log pθ(ω)

dθ

〉
pθ

. (2.39)

The Fisher information is an important quantity in classical information theory and perhaps most
famously appears in the Cramér-Rao bound [102,103].

If we allow A, B and p to be the diagonal elements of the commuting Hermitian matrices X,
Y and ρ respectively. Then the inner product in Eq. (2.36) is equal to Tr[XρY ]. In order to deal
with the geometry of quantum states, we want to generalise X,Y ∈ Mn(C) to the set of complex
n× n matrices, and ρ to a positive, semi-definite Hermitian operator of trace 1. In this scenario
the order of the matrices in the trace is important. We define the inner product,

⟨X,Y ⟩ρ = Tr[(Kρ(X))†Y ], (2.40)

where Kρ(Y ) is a positive (super)operator. This is the most general form of inner product on this
space [87] that satisfies

⟨aX, bY ⟩ρ = āb⟨X,Y ⟩ρ (2.41)
⟨X,X⟩ρ ≥ 0. (2.42)

Let T be a completely positive, trace preserving (CPTP) map. An inner product is monotone if

⟨X,Y ⟩ρ ≥ ⟨T(X),T(Y )⟩T(ρ) (2.43)

for all T. Petz [87] showed that this is equivalent to the condition,

K−1
ρ ≥ T†K−1

T(ρ)T. (2.44)

Petz was also able to show that if we impose a symmetry condition, ⟨X,Y ⟩ρ = ⟨Y †, X†⟩ρ,
then there is a one to one correspondence between operator monotone functions f that satisfy
f(t) = tf(t−1) and monotone inner products [87] i.e. Eq. (2.43) given by,

Kρ = R1/2
ρ f(LρR−1

ρ )R1/2
ρ , (2.45)

where Rρ(X) = Xρ and Lρ(X) = ρX. For any two Hermitian matrices A and B for which
A−B ≥ 0, i.e. is positive semi-definite, an operator monotone function f satisfies f(A)−f(B) ≥
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0.
Given the relationship in Eq. (2.44) it makes sense to analyse the dual inner product [101]

given by
⟨A,B⟩(D)

ρ = Tr[A†(K−1
ρ (B))]. (2.46)

If we associate A = Kρ(X) and B = Kρ(Y ) we can see that

⟨A,B⟩(D)
ρ = ⟨X,Y ⟩ρ (2.47)

The set of all Hermitian, positive-definite, n×n matrices of trace 1, Mn, is a smooth manifold,
so we can make it a Riemannian manifold by equipping its tangent space with a positive-definite
inner product g. For any set of smooth local coordinates on Mn, given by m real-valued functions
(θ1, .., θm), we can calculate the metric tensor components,

gi,j := g
(
∂

∂θi
,
∂

∂θj

)
. (2.48)

This defines a Riemannian metric on Mn. If we define this inner product to be the dual inner
product ⟨A,B⟩(D)

ρ defined in Eq. (2.46), this metric has a number of interesting properties.
Consider the set of quantum states ρθ parameterized by a single real number θ. The distance
between ρθ and ρθ+ϵ is

√〈
dρ
dθ ,

dρ
dθ

〉(D)

ρ
. When dρ

dθ and ρθ commute we get

K−1
ρ,c

(
dρ

dθ

)
= 1
ρθ

dρ

dθ
, (2.49)

for any f , giving the classical Fisher information,
〈
dρ
dθ ,

dρ
dθ

〉(D)

ρ,c
= Fθ. Let us look at some specific

examples of operator monotone functions now. fs(t) = (1 + t)/2 gives us Kρ,s = (Rρ + Lρ)/2.
In order to calculate the inner product we define K−1

ρ,s(
dρ
dθ ) = Lρ which gives dρ

dθ = 1
2(Lρρ+ ρLρ).

This operator, Lρ, is known as the symmetric logarithmic derivative (SLD) and is an important
quantity in quantum metrology as we will see in Chapter 3. When we sub this into the inner
product we get

〈
dρ

dθ
,
dρ

dθ

〉(D)

ρ,s
= Tr

[
dρ

dθ
K−1
ρ,s

(
dρ

dθ

)]
= Tr

[1
2(Lρρ+ ρLρ)L

]
= Tr

[
ρL2

ρ

]
(2.50)

which is the quantum Fisher information Fθ(ρ). So, for this reason the metric defined by Kρ,s =
1/2(Rρ + Lρ) is usually called the SLD metric, the quantum Fisher information metric, or the
Bures metric. We can define some other important metrics using the same method, for example
fb(t) =

∫ 1
0 t

λdλ giving Kρ,b =
∫ 1

0 R1−λ
ρ Lλρdλ which is usually referred to as the Bogoliubov metric

or the Kubo-Mori metric.
Finally, if we consider the case of the Bures metric with pure states and unitary evolution we
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have iℏd|ψ⟩dθ = H |ψ⟩ and Lρ = 2
iℏH giving

〈
dρ

dθ
,
dρ

dθ

〉(D)

ρ,p
= 2
iℏ

Tr
[
d(|ψ⟩⟨ψ|)

dθ
H

]
= 2
iℏ

Tr [(|dψ⟩⟨ψ| + |ψ⟩⟨dψ|)H] =

= 2 ⟨dψ|dψ⟩ + 2 ⟨ψ|dψ⟩ ⟨dψ|ψ⟩ , (2.51)

where |dψ⟩ = dψ
dθ . This metric is known as the Fubini-study metric and can also be derived as an

extension of the classical Fisher information metric to complex projective Hilbert spaces [104]. As
discussed above this is the metric that Anandan and Aharonov [40] used to derive the MT bound
for time-dependent Hamiltonians and non-orthogonal pure states (2.13).

2.3 Open System Quantum Speed Limits

The first attempt at generalising QSLs to open systems can be traced back to the work of Braun-
stein and Caves [47]. They used the fact that the infinitesimal form of the Bures distance [105],

LB(ρ1, ρ2)2 = 2
[
1 −

√
FB(ρ1, ρ2)

]
, (2.52)

with FB(ρ1, ρ2) =
[
Tr
√√

ρ1ρ2
√
ρ1
]2

, can be expressed [106] in terms of the SLD inner product
in Eq. (2.50)

LB(ρ, ρ+ dρ)2 = 1
4 ⟨dρ, dρ⟩(D)

ρ,s = 1
4 Tr

[
dρK−1

ρ,s (dρ)
]
. (2.53)

While there is no explicit, basis-independent, way to express K−1
ρ,s(A), we can express it in a specific

basis. For example, when written in the diagonal basis of the density matrix ρ =
∑
j pj |j⟩⟨j| we

get [47]
K−1
ρ,s(A) = 2

∑
j,k

⟨j|A |k⟩
pj + pk

|j⟩⟨k| . (2.54)

If we now assume unitary dynamics described by the von-Neumann equation [100]

iℏ
dρ

dt
= [H, ρ] = [H − ⟨H⟩, ρ] = [δH, ρ]. (2.55)

We can combine the above equations to obtain,
(
dLB
dt

)2
= 1

2ℏ2

∑
j,k

(pj − pk)2

pj + pk
| ⟨j| δH |k⟩ |2 ≤ 1

2ℏ2

∑
j,k

(pj + pk)| ⟨j| δH |k⟩ |2 = ∆H2

ℏ2 , (2.56)

where the inequality (pj − pk)2 ≤ (pj + pk)2 follows from the fact that pi is positive for all i.
Then by taking the square root of both sides and integrating we get the following inequality,

∫ LB(ρ0,ρτ )

0
dLB ≤ 1

ℏ

∫ τ

0
dt∆H. (2.57)
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It is easy to see that this bound can never be saturated by a mixed state since the inequality in
Eq. (2.56) is only saturated when pipj = 0 for all i ̸= j and this is only true for pure states [47].
We can see that the final time τ does not appear explicitly in the above inequality so in order to
get a bound on the time we must use the trick of multiplying both sides by τ and rearranging we
obtain a QSL like inequality,

τ ≥ ℏ
∆Eτ

LB(ρ0, ρτ ), (2.58)

where ∆Eτ is the time averaged variance of the Hamiltonian ∆Eτ = 1
τ

∫ τ
0 dt∆H. So now we have

derived a QSL for mixed states and time-dependent Hamiltonians. This trick of forcing in time by
multiplying both sides is a very common technique used when deriving QSLs. This has led to some
confusion regarding how to meaningfully interpret these bounds. By introducing action QSLs, such
that time enters the picture more naturally, we demonstrate that some of these interpretive issues
can be alleviated. Furthermore, through the following analysis we argue that there is no reason to
expect that these QSL bounds place any meaningful limit on the actual minimum time, except in
the limit of constant instantaneous speed (such as in the MT bound), but rather they provide a
useful tool to characterise the dynamics.

There were three main papers that provided breakthroughs in extending QSLs to arbitrary
system evolutions, described by CPTP maps. Taddei et al. [77] directly extended the work of
Braunstein and Caves [47]. They showed that for any distance measure L[FB(ρ1, ρ2)] that depends
on ρ1 and ρ2 solely via the Bures fidelity FB the following inequality holds,√

d2L(FB)/dF 2
B

2[dL(FB)/dFB]3

∣∣∣∣∣∣
FB→1

L[FB(ρ0, ρτ )] ≤
∫ τ

0
dt

√
1
4 Tr

[
dρ

dt
K−1
ρ,s

(
dρ

dt

)]
=
∫ τ

0
dt

√
Ft(ρt)

4 ,

(2.59)
where Ft(ρt) is the quantum Fisher information with respect to t. In contrast to the Braunstein
and Caves [47] result this bound can be saturated for mixed quantum states.

Another approach was followed by del Campo et al. [65]. They used the relative purity as their
distance measure,

P(ρ0, ρτ ) = Tr[ρ0ρτ ]
Tr
[
ρ2

0
] . (2.60)

Applying the Cauchy-Schwarz inequality to the time derivative of this measure gives the following
bound,

|Ṗ(ρ0, ρt)| ≤

√
Tr[(L†ρ0)2)] Tr

[
ρ2
t

]
Tr
[
ρ2

0
] ≤

√
Tr[(L†ρ0)2)]

Tr
[
ρ2

0
] , (2.61)

where L† is the Hermitian adjoint of the Lindbladian [107, 108]. Then, if we parameterize
P(ρ0, ρτ ) = cos θ, with θ ∈ [0, π/2], integrating from initial to final state gives us a QSL,

τ ≥ | cos θ − 1| Tr
[
ρ2

0
]√

Tr[(L†ρ0)2)]
≥ 4θ2 Tr

[
ρ2

0
]

π2
√

Tr[(L†ρ0)2)]
. (2.62)
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the clear advantage of this bound is that it depends only on the Lindbladian and the initial state,
although, this comes at the disadvantage of only being saturable for very specific combinations
of initial states and Lindbladians. They also derive equivalent bounds for time-dependent Lind-
bladians, and generic, CPTP evolutions, but at the cost of losing the time-independence of the
right-hand side of the equation.

Not long after the above two papers were published Deffner and Lutz [66] developed another
form of open system QSL. They specifically looked at the Bures angle for a pure initial state |ψ0⟩

LA = arccos
(√

⟨ψ0| ρτ |ψ0⟩
)
. (2.63)

They were able to obtain a number of QSL bounds of the form

τ ≥ 1
Λxτ

sin2[LA(ρ0, ρτ )], (2.64)

where Λxτ = 1
τ

∫ τ
0 ∥ρ̇t∥x and ∥A∥x corresponds to the trace, Hilbert-Schmidt and operator norms

which are specific cases of the Schatten p-norm, ∥A∥p = (Tr
[√
A†A

]p
)

1
p , for p = 1, 2 and ∞

respectively. The structure of the Schatten p-norm means that the operator norm bound is always
the tightest. These bounds are some of the simpler open system QSLs but once again come at
the cost of not being saturable in general [92].

2.3.1 Generalized Geometric Quantum Speed Limits

All of the above speed limits have their strengths and weaknesses, and much like in the case of
the MT and ML bounds there is no single tightest QSL for all evolutions. Pires et al. [78] shed
some light on this problem by proving that there are, in fact, infinitely many saturable QSLs for
open quantum system dynamics. In order to prove this, they made use of the Riemannian metrics
described in Section 2.2,

gfρ
(
dρ

dt
,
dρ

dt

)
= 1

4

〈
dρ

dt
,
dρ

dt

〉(D)

ρ,f
= 1

4 Tr
[
dρ

dt
K−1
ρ,f

(
dρ

dt

)]
, (2.65)

where f denotes the symmetric, operator monotone that defines the specific metric. The arbitrary
factor of 1/4 is chosen so that the geodesic distance corresponds to well-known distance measures
in specific metrics. Our manifold is the set of all Hermitian, positive-definite, n × n matrices of
trace 1, Mn. For any set of smooth local coordinates on Mn, given by m real-valued functions
(θ1, .., θm) we can write the above inner product as

gfρ
(
dρ

dt
,
dρ

dt

)
=

m∑
j,k

gfj,k
dθj

dt

dθk

dt
, (2.66)
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with gfj,k = gfρ
(
∂ρ
∂θj ,

dρ
dθk

)
. Morozova and Chentzov [86]were also able to derive an explicit form

of the inner product in terms of the spectral decomposition of ρ =
∑
j pj |j⟩⟨j|

gfρ
(
dρ

dt
,
dρ

dt

)
= 1

4

∑
j

(dρjj)2

pj
+ 2

∑
j<k

cf (pj , pk)|dρjl|2
 , (2.67)

where dρjl = ⟨j| dρdt |l⟩ and cf (x, y) = 1
yf(x/y) depends on Morozova-Chentzov function, f , for the

metric gfρ . It is easy to see from this formulation that there is a classical component, given by the
Fisher information that is metric independent and a coherent quantum component that depends
on f . We can think of the first of these two contributions as classical because, if we consider
a classical process where the eigenvectors of our state stay fixed, and only pj change with t, we
have dρ

dt =
∑
j
dpj

dt |j⟩⟨j|. This tells us that dρjl = 0 for j ̸= l, and therefore, the second term in
Eq. (2.67) is zero for such a process.

The derivation of these geometric QSL, in essence, relies on the simple and elegant consider-
ation that the geodesic distance between any two points of a Riemannian metric is the shortest
possible length connecting them. The path length is calculated by integrating the inner product
along the curve γ, giving the inequality,

Lf (ρ0, ρτ ) ≥
∫
γ

√
gf (dρ, dρ) =

∫ τ

0
dt

√√√√ m∑
j,k

gfj,k
dθj

dt

dθk

dt
≡ ℓγf (ρ0, ρτ ), (2.68)

where Lf (ρ0, ρτ ) is the geodesic distance between ρ0 and ρτ in the Riemannian metric gfρ . It is
important to stress that Eq. (2.68) expresses a hierarchy among all possible paths connecting the
two states ρ0 and ρτ for a fixed metric gfρ , with equality obtained if and only if γ corresponds to
a geodesic in that metric. In order to translate this inequality into a QSL for the evolution time
as in Eq. (2.13), one usually introduces the path-average speed,

vγf = 1
τ
ℓγf (ρ0, ρτ ), (2.69)

from which it straightforwardly follows that

τ ≥ τγf = Lf (ρ0, ρτ )
vγf

. (2.70)

This, essentially, equates to multiplying both sides by the evolution time, τ , so this inequality is
still really only telling us about the ratio between the path length and the geodesic length. The fact
that there are infinitely many symmetric, operator monotone functions, f , implies that there are
infinitely many QSLs for open quantum systems. Additionally, each of these QSLs can be saturated
by following the geodesic in the corresponding metric. Unfortunately, a closed form of the geodesic
distance, Lf (ρ0, ρτ ), is only known for two of these metrics, for all other metrics we must rely
on loose bounds or numerical calculations. Although, it is possible to derive QSLs with known
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geodesic distances for other kinds of metrics that are not Riemannian and completely positive, as
we will see below. As already mentioned, for pure states and unitary evolution, the Fubini-Study
metric is the unique contractive Riemannian metric and leads to the MT bound. Furthermore,
in this case the speed is related to a physical resource of the system, namely the (square root of
the) energy variance of the initial state. Whenever open quantum systems and mixed states are
considered, however, the non-uniqueness of gfρ naturally brings forward an important question:
is there a particular metric which gives rise to a QSL which is the tightest possible, therefore
representing the ultimate lower bound on the evolution time?

The answer to the above question is actually very subtle. In Ref. [78] it was argued that,
for any given path γ∗ between two fixed initial and final states ρ0, ρτ , the hierarchy of the MCP
metrics reflects into the possibility to find, at least in principle, the geodesic which gives rise to
the tightest geometric QSL bound to the evolution. The latter is given by,

τQSL = τγ
∗

f∗ ≤ τ, (2.71)

where the metric gf∗ is the metric such that its geodesic Lf∗(ρ0, ρτ ) is the closest to the actual
given path γ∗, i.e.

f∗ such that inf
f
δγ

∗

f = δγ
∗

f∗ , (2.72)

with δγ
∗

f ≡ τ/τγ
∗

f − 1.
Although it is possible to define and calculate the quantity, δγ

∗

f∗ , it is essentially meaningless.
An implicit idea in the definition of a hierarchy of QSL bounds is that only the tightest bound is
valid since, it would seem on the surface, that saturating any of the other bounds would violate
the tightest bound, but this is simply not true. Changing the path γ∗ results in the path lengths
changing differently in all metrics and the hierarchy rearranging itself. Once all the quantities
entering the bound Eq. (2.71) are uniquely determined, i.e. once a path γ∗ and start and end
points are fixed, nothing more can be done to approach the QSL bound. Equivalently said, if
a given path connecting two quantum states is not already optimal, in the sense that does not
already coincide with a geodesic path according to some contractive Riemannian metric, then
the geometric QSL bound is never saturable and will only provide an estimate of “how far from
optimal” the evolution time is with respect to τQSL.

Thus, if we are free to choose the path connecting a given initial and target state, then the
QSL bound for every metric gfρ can be saturated simply by moving along a path which coincides
to the geodesic for that metric. A priori, the choice of one metric over another may be dictated
by the physics of the problem at hand, e.g. the average initial energy as in the ML bound or the
initial energy variance as for the MT bound. Regardless though, the corresponding QSL bound
can, in principle, be achieved. One possible middle ground would be to fix the dynamics, e.g. a
specified master equation, but allow the initial and final states to change. In this scenario there
is no single metric gfρ which represents the tightest QSL for every possible choice of the path’s
boundary conditions.
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2.3.2 Generalized amplitude damping channel

Let us provide an explicit demonstration of this for a simple paradigmatic example consisting of a
qubit undergoing a generalized amplitude damping channel (GADC) modelled using the techniques
outlined in Chapter 1. This ubiquitous situation describes a two-level quantum system undergoing
equilibration with a large thermal bath, such that its evolution is described in terms of the following
master equation (in interaction picture)

ρ̇t = L(ρt) = γ

(
σ−ρtσ+ − 1

2
{
ρt, σ+σ−

})
+ Γ

(
σ+ρtσ− − 1

2
{
ρt, σ−σ+

})
(2.73)

where β= 1
2 ln γ

Γ denotes the inverse temperature of the bath in units of the qubit’s energy.
While we will consider the dynamics (GADC) and the final state (i.e. the thermal state) fixed,

we will vary the initial state ρ0, thus resulting in a different path on the Bloch sphere for each
starting configuration. We will focus on three important metrics for which their geodesics can be
calculated and compute the respective QSL bound, Eq. (2.70). The first is the quantum Fisher
information (QFI) metric (2.50) [46,47,109]. The geodesic distance in this metric is given by the
Bures angle,

Ls(ρ, σ) = arccos
(

Tr
√√

ρσ
√
ρ

)
. (2.74)

The resulting QSL reads [77]
τs = Ls(ρ0, ρτ )

1
τ

∫ τ
0 dt

√
Ft(ρt)

. (2.75)

The second metric we will consider is the one related to the Wigner-Yanase (WY) skew information
metric [78]. The corresponding operator monotone function is fw(t) = (1/4)(

√
t + 1)2. The

geodesic distance in this metric is given by,

Lw(ρ, σ) = arccos
(
Tr
[√
ρ
√
σ
])
. (2.76)

This geodesic distance was derived by Gibilisco and Isola [110,111] and is a quantum generalisation
of the Bhattacharya angle. This metric is known as the WY metric because for unitary dynamics
with time dependent Hamiltonian Ht we have [78,111],

ℓγw(ρ0, ρτ ) =
√

21
τ

∫ τ

0
dt
√
I(ρt, Ht), (2.77)

where I(ρ,A) = −(1/2) Tr
{
[√ρ,A]2

}
is the WY skew information of the self-adjoint matrix A.

Finally, we will consider the metric based on the trace distance (TD) [72] which stems from a
direct application of the triangle inequality [73] rather than being one of the Riemannian metrics
defined in section 2.2. The distance is given by the trace norm,

Lt(ρ, σ) = ∥ρ0 − ρτ∥1 = Tr
√

(ρ0 − ρτ )2. (2.78)
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The geodesic paths are also known for all three of these metrics. In the following p(t) is any
function satisfying p(0) = 0 and p(τ) = 1 that is monotonically increasing on that interval. The
geodesic path for the QFI metric was derived by Uhlmann [112] and is given by,

ρt = [(p(t)ωτ + (1 − p(t))ω0)((p(t)ω†τ + (1 − p(t))ω†0))]
∥p(t)ωτ + (1 − p(t))ω0∥2 (2.79)

where ω0 is a purification of ρ0 = ω0ω
†
0. Therefore if ρ0 has a spectral decomposition ρ0 =∑

i pi |pi⟩⟨pi| then we define, ω0 =
∑
i
√
pi |pi⟩⟨ϕi|, where |ϕi⟩ is another orthonormal basis of the

Hilbert space, with ωτ defined in terms of ω0 as

ωτ = ρ
−1/2
0 (ρ1/2

0 ρτρ
1/2
0 )1/2ρ

−1/2
0 ω0. (2.80)

Similarly for the WY metric the geodesic path was derived by Gibilisco [111] and is given by,

ρt =
(
(1 − p(t))√ρ0 + p(t)√ρτ

)2
Tr
{(

(1 − p(t))√ρ0 + p(t)√ρτ
)2} . (2.81)

Finally, the TD geodesic path is simply a “straight line” between the initial and final states,

ρt = (1 − p(t))ρ0 + p(t)ρτ . (2.82)

Fig. 2.1(a) shows the result of the evaluation of the three QSL bounds as a function of the
parameter, θ, which determines the initial state that, without any loss of generality, is taken to be
pure ρ0(θ)= |Ψ0(θ)⟩ ⟨Ψ0(θ)|, with |Ψ0(θ)⟩=cos(θ) |0⟩+sin(θ) |1⟩. While for any given fixed path
(i.e. in this case, fixed θ), one QSL is clearly tighter than the other, thus confirming Eq. (2.71),
it is evident that none of them provides the tightest QSL for every parameter θ ∈ [0, π]. The
tightest bound for any given initial state is the one corresponding to the metric whose geodesic
happens to be closest to the GADC dynamics for that particular choice of θ. We finally notice
that for θ= 0, π/2 all the bounds saturate because the GADC traces a geodesic path for all the
considered metrics.

When we have a two-dimensional system, ρ =
∑1
i,j=0 ρij |j⟩⟨i| where {|i⟩} is an arbitrary

orthogonal basis, it can be parameterised by the Bloch sphere coordinates

u = ρ01 + ρ10 (2.83)
v = i(ρ01 − ρ10)

w = ρ00 − ρ11.

The geodesic paths corresponding to each of the three metrics described above are shown in the
Bloch sphere in Figs. 2.1(b), (c), (d) for different values of θ. The basis is chosen to be the
energy basis. Figure 2.1(b) corresponds to the case of θ = 0 where we initially start in the excited
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Figure 2.1: (a) Plot of the ratio, τγf /τ , between the quantum speed limit time and the evolution
time for three different choices of metric f = w, s, t (Wigner-Yanase, quantum Fisher information
and trace distance, respectively), as a function of the initial state parameter θ with β=0.5. The
path γ corresponds to the GADC. (b),(c),(d) Bloch sphere representation of the three geodesic
paths of a two-level system undergoing the GADC, Eq. (2.73), with β= 0.5. The straight, blue
line corresponds to the TD geodesic path. The QFI geodesic corresponds to the solid, green curve.
The remaining solid, purple line is the WY geodesic. Finally, the path followed by the GADC is
shown in dashed, red. Initial states in (b),(c),(d) correspond to θ = 0, π/6, 1.0256 respectively
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state. Here all the geodesics coincide with the actual path that the GADC takes, and this makes
sense since we see the QSL saturate at θ = 0 in Fig. 2.1(a). As we discussed below Eq. (2.67)
the metric can be split up into a classical and quantum component, both of which are strictly
positive. Therefore, if the initial state and final states commute with each other, such as is the
case for θ = 0, π/2, then the geodesic path between those states will also commute at all times.
This means that the quantum contribution to the metric is zero along the geodesic and all the
Morozova and Chentzov [86] metrics share the same geodesic path. The geodesic path of the TD
metric has the property that it is just a linear combination of the initial and final state, therefore
if the initial and final state commute then the geodesic also commutes. For θ = π/6 in Fig 2.1(c)
none of the QSLs are saturated and it is not easy to tell which of the three will be the tightest.
Finally, in Fig 2.1(d) we choose θ ≈ 1 so that our initial state has the same u Bloch sphere
component as the thermal state. When this is the case, the GADC dynamics corresponds with
the straight-line geodesic of the TD metric.

2.3.3 Qubit metrics

To understand why the metrics have the geodesics they do, we can take a closer look at the form
of their metrics. We make the transformation to spherical coordinates in the Bloch sphere which
are defined implicitly as

u = r sin θ cosϕ (2.84)
v = r sin θ sinϕ

w = r cos θ.

In this basis we can calculate the eigenvalues,

E0 = 1
2(1 − r); E1 = 1

2(1 + r), (2.85)

and the corresponding eigenvectors,

|E0⟩ =
(

sin θ
2

−eiϕ cos θ2

)
; |E1⟩ =

(
cos θ2
eiϕ sin θ

2

)
. (2.86)

With this basis we can now calculate the metric tensor for the Morozova and Chentzov [86] metrics
as defined in Eq. (2.67). In this coordinate frame, the first term, common to all of these metrics
is, ∑

j

(dρjj)2

pj
= dr2

1 − r2 . (2.87)

Then the second term is going to depend on the specific metric that we are using, in particular,
it depends on the Morozova-Chentzov function f that goes into cf (x, y) = 1

yf(x/y) . We can
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(a) (b) (c)

Figure 2.2: Representation of the three geodesic paths of a two-level system undergoing the GADC,
Eq. (2.73), with β= 0.5 on the surface of a 2-sphere representing the QFI metric. The blue line
corresponds to the TD geodesic path. The QFI geodesic corresponds to the solid, green curve.
The remaining solid, purple line is the WY geodesic. Finally, the path followed by the GADC is
shown in dashed, red. Initial states in (a),(b),(c) correspond to θ = 0, π/6, 1.0256 respectively.

calculate the second term exactly and it gives us,

∑
j<k

cf (pj , pk)|dρjl|2 = r2(dθ2 + sin2 θdϕ2)
2f
[

1−r
1+r

]
(1 + r)

, (2.88)

so then combining these two terms together we get the line element,

ds2 = 1
4

 dr2

1 − r2 + r2(dθ2 + sin2 θdϕ2)
f
[

1−r
1+r

]
(1 + r)

 . (2.89)

The first interesting thing we can do with this metric is restrict ourselves to pure states, for this
we have r = 1 and dr = 0 leaving us with,

ds2 = 1
8f [0]

(
dθ2 + sin2 θdϕ2

)
. (2.90)

This is just the metric of a 2-sphere. Additionally, the coordinates are exactly the spherical
coordinates in the Bloch sphere, this tells us that for pure states that the geodesics are the great
circles of the Bloch sphere and since any two pure states can be represented in a two-dimensional
subspace we now know the geodesic path between any two pure states. This is another way to
prove the result for saturating the ML bound from Sec. 2.1.4. So, all the Morozova and Chentzov
metrics agree about the geodesic path for pure states confirming the fact that there is only one
unique, contractive, Riemannian metric over the pure states (up to a constant factor).

Now we can look at this in more detail for specific metrics. The QFI metric is defined by the
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(a) (b) (c)

Figure 2.3: Representation of the three geodesic paths of a two-level system undergoing the GADC,
Eq. (2.73), with β= 0.5 on the surface of a 2-sphere representing the WY metric. The blue line
corresponds to the TD geodesic path. The QFI geodesic corresponds to the solid, green curve.
The remaining solid, purple line is the WY geodesic. Finally, the path followed by the GADC is
shown in dashed, red. Initial states in (a),(b),(c) correspond to θ = 0, π/6, 1.0256 respectively.

Morozova-Chentzov function f(t) = (1 + t)/2, subbing this into Eq. (2.89) we get

ds2 = 1
4

(
dr2

1 − r2 + r2(dθ2 + sin2 θdϕ2)
)

(2.91)

then by making the substitution r = sin ξ we end up with

ds2 = 1
4
(
dξ2 + sin2 ξ

(
dθ2 + sin2 θdϕ2

))
, (2.92)

which is the metric of a 3-sphere of radius 1/2 embedded in 4-dimensional Euclidean space using
the hyper-spherical coordinates,

x0 = r sin ξ sin θ sinϕ (2.93)
x1 = r sin ξ sin θ cosϕ

x2 = r sin ξ cos θ

x3 = r cos ξ.

Then we know that the geodesics in the QFI metric are just the great circles of this sphere.
More specifically if we look at the parameters we see that arcsin r = ξ ∈ {0, π/2}, whereas for
a full 3-sphere this would run all the way to π. This means that the space of two-dimensional
quantum states equipped with the QFI metric is isomorphic to a 3-dimensional hemisphere in
4-dimensional Euclidean space. The maximally mixed state is at the north pole and pure states
are on the rim of the hemisphere, i.e. ξ = 0, π/2 respectively.

For the example of the GADC in Sec. 2.3, we chose initial and final states with ϕ = 0 and all
the intermediate states also have ϕ = 0 so this simplifies our metric to the metric of a 2-sphere
embedded in the 3-dimensional Euclidean space. This means that it is now possible to visualise
the paths as we do in Fig 2.2. We can see that all of our pure initial states lie on the boundary of
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the hemisphere. The QFI geodesic takes the geodesic path of the sphere which is just the great
circle.

We can also perform a similar analysis on the WY metric which has the Morozova-Chentzov
function, f(t) = (1/4)(

√
t+ 1)2, this leaves us with the metric

ds2 = 1
4

(
dr2

1 − r2 + r2(dθ2 + sin2 θdϕ2(√
1 − r +

√
1 + r

)2
)

(2.94)

then by making the substitution r = 1/2 sin ξ we end up with

ds2 = dξ2 + sin2 ξ
(
dθ2 + sin2 θdϕ2

)
. (2.95)

So once again we end up with a 3-sphere, this time of radius 1 and ξ ∈ {0, π/4}, we can think
of this as the top 1/4 of the 3-sphere. By once again restricting to ϕ = 0 and looking at the
GADC map, we plot different geodesics paths in this metric in Fig 2.2. This time the WY geodesic
corresponds to the great circle of the sphere. Although there is no general equation for the geodesic
in every Morozova-Chentzov metric it may be possible to solve this geodesic equation and find
a general solution for two-dimensional sub-spaces. This would be particularly useful because it
would give us the geodesic path and distance between any two pure states in each metric.

For the trace distance QSL the equivalent of this line element is given by

ds2 =
∥∥∥∥dρdt

∥∥∥∥2

1
(2.96)

= 1
2
(
du2 + dv2 + dw2

)
,

which is exactly the metric of the Bloch sphere. This explains why the trace distance geodesics
are straight lines in Bloch sphere plots.

2.4 Action Quantum Speed Limits

The previous section highlights that when open quantum systems are considered, there is no single
contractive, Riemannian metric for which the corresponding geometric QSL bound is the tightest
unless the path and endpoints are fixed. Fixing a path is therefore a necessary requirement in order
to have a well-defined unique and tightest QSL bound Eq. (2.71) such that Eq. (2.72) holds. If
every parameter of the problem is fixed, however, unless a given dynamics already coincides with
a geodesic path according to some metric (e.g. in the case of a GADC channel with θ = 0, π
in the above example), then the geometric QSL time provides a quantitative indication of how
far the traversed path is from the optimal path, according to the specific metric in question.
Nevertheless, despite what the name might suggest, the geometric quantum speed limit time is
completely insensitive to the actual instantaneous speed.

This simple observation represents the starting point for introducing our new family of QSLs.
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The instantaneous speed at which a given path is travelled is an important degree of freedom.
Indeed, the varying speed of evolution provides a vital tool in many physical settings, for example
every thermodynamic cycle of any driven engine is crucially dependent on the speed at which the
protocol is performed [14] and high-fidelity control can be achieved by varying the speed with
which some time-dependent ramp is applied such that the dynamics slows down when energy gaps
close, which applies to understanding the dynamics across quantum phase transitions in light of
the Kibble-Zurek mechanism [19,113]. The generation of defects during such a ramp will depend
on how the system traverses the impulse regime, this information is not properly captured by
considering only the average speed of the system over the entire ramp. The instantaneous speed
around the start and end points is also vital for quantum control because no physical clock can
perfectly characterize time [114].

We incorporate the instantaneous speed into the formulation of quantum speed limits by
borrowing inspiration from recent developments in thermodynamic geometry [14, 115–121]. This
can be achieved by applying the Cauchy-Schwarz inequality

∫ τ
0 h

2dt
∫ τ

0 f
2dt ≥ [

∫ τ
0 fh dt]2 to the

path length ℓγf (ρ0, ρτ ). Specifically, by setting h=1, one has

τ

∫ τ

0
dt

M∑
jk=1

gjk
dθj
dt

dθk
dt

≥

∫ τ

0
dt

√√√√√ M∑
jk=1

gjk
dθj
dt

dθk
dt


2

(2.97)

which leads to the following result,

τ ≥ τγa = Lf (ρ0, ρτ )2

aγf
, (2.98)

where aγf =
∫ τ

0 dt
∑M
jk=1 gjk

dθj

dt
dθk
dt is known as the action or energy functional. Eq. (2.98) is the

anticipated new family of QSLs which, in light of the above quantity and its interpretation, we
name action quantum speed limits.

Most geometric QSLs display some peculiar behaviour when the target state is only approached
asymptotically in the long-time limit such as in the case of the GADC or the damped Jaynes-
Cummings model [92]. This is because the geometric QSLs depend on the average speed over
the entire trajectory. Since the time to reach this final steady state is arbitrarily long, but the
distance between the initial and the steady state is bounded, this leads to the QSL time scaling
linearly with the evolution time in the long-time limit. This is not very physical since the system
state is asymptotically close to the steady state and its instantaneous speed is essentially zero,
yet the QSL bound is still getting larger. In order to fix this problem Mirkin et. al. [92] highlight
that there is another way to define the QSL time that does not seem to have this problem. For
any geometric bound the path length must be longer than the geodesic length. Therefore, there
must exist some point along the actual evolution path where the distance travelled is equal to the
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Figure 2.4: A comparison between the geometric and action QSL times for the GADC with master
equation given by Eq. (2.73), with T = 0 and the initial state of θ = 0. Results are qualitatively
identical for all values of T and θ.

geodesic distance between the initial and final state, i.e.

Lf (ρ0, ρτ ) =
∫ τmin

0
dt

√√√√ m∑
j,k

gfj,k
dθj

dt

dθk

dt
. (2.99)

While this does solve the issue of linear scaling in the QSL time with the driving time for most
processes, we will still see this linear scaling when the actual evolution path is geodesic path
since τmin is just equal to the geometric QSL in this scenario. There are also a number of other
conceptual problems with defining the QSL time like this, such as it not necessarily being symmetric
if the process is played backwards. Action QSLs can address all of these problems without any of
the extra conceptual baggage. In Fig. 2.4 we can see a comparison between the geometric QSLs
and the action QSLs, we have chosen an initial state of θ = 0 so that all of the metrics agree on
the geodesic path. Clearly, the geometric QSL (and τmin) displays this linear scaling in the long
time limit but the action QSL flattens out instead. This can be understood from the fact that the
action is the integral of the square of the instantaneous speed, which gets asymptotically smaller
as the system approaches the steady state.

It is crucial to point out that, for any given path γ, Eq. (2.98) is saturated when γ is a geodesic
and the speed along it,

√∑M
jk=1 gjk

dθj

dt
dθk
dt is constant. This means that, if a given path is already

optimal in the sense that it coincides with a geodesic and thus saturates the geometric QSL, then
the action QSL will also be saturated provided this path is traversed at a constant speed in the
corresponding metric. Conversely, when a given path is not optimal, then Eq. (2.98) becomes
more delicately dependent on this instantaneous speed, as we show explicitly below. This also
explains why the action QSL can be so far from saturated in Fig 2.4 even though the path is a
geodesic; the instantaneous speed is far from constant.
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Another important consideration stems from the following inequality:

τγa
τ

= Lf (ρ0, ρτ )2

τ aγf
≤ Lf (ρ0, ρτ )2

τ2(vγf )2 =
(
τγf
τ

)2

(2.100)

This result highlights the fact that the geometric QSL is a special instance, corresponding to the
upper bound, of the action QSL. This physically indicates that, for every non-optimal path, any
time-dependent profile for the speed will lead to a QSL bound which is going to be less than or
equal to the geometric ideal QSL value. This is however an especially important property, as it
implies that different strategies aimed at optimizing the speed for any given non-optimal path
will reflect in the value of the action-QSL time which progressively approaches the bound given
in Eq. (2.100). Due to the very structure of it involving the action aγf , finding the optimal way
to traverse a path is naturally suited to be solved by techniques borrowed from optimal control
theory [21,122–129].

Since there is no square root inside the integral in the action this means that we can split the
integral up into its constituent components. The most obvious partition we can make would be
the one in Eq. (2.67). Using this we can identify the classical and quantum contributions to the
speed limit time. This could be used to compare different paths and gain a greater understanding
of what is contributing to the QSL. The concept of splitting the denominator in the speed limit up
has been employed before [81] but it can be expanded to many more scenarios with action QSLs.

2.5 Optimizing the Instantaneous Speed

As we have mentioned above a number of times, the standard geometric QSLs are insensitive
to the instantaneous speed along the path. This means that there are a number of solutions
that minimise the path length between any two points on our Riemannian metric. In Riemannian
geometry, in order to get around this problem it is standard to use the Euler-Lagrange equation
to derive a geodesic equation. The solutions to the Euler-Lagrange equation are the stationary
points of the action, therefore the solution to this equation will be the geodesic that minimises
the action and that is the geodesic that satisfies the standard geodesic equations,

d2θk

dt2
+ Γki,j

dθi

dt

dθj

dt
= 0, (2.101)

where
Γki,j = 1

2g
lk (∂iglj + ∂jgli − ∂lgij) , (2.102)

are the Christoffel symbols. For action QSLs, minimising the action is equivalent to saturating the
QSL.

This is all well and good for when we have full control over the system evolution but often
there are constraints on the evolutions that are possible. We could try to incorporate these into
the geodesic equations, such as when we restricted to pure states in Eq. (2.90) and derived the

34



(a) (c) (e)

τa
γ

τ

τf
γ

τ

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

θ

τa
γ

τ

τf
γ

τ

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

θ

τa
γ

τ

τf
γ

τ

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

θ

(b) (d) (f)

π

4

Initial

π

6
π

3

0.2 0.4 0.6 0.8 1.0
t

τ

0.2
0.4
0.6
0.8
1.
p(t)

Initial
2π

5

π

4
π

6

0.2 0.4 0.6 0.8 1.0
t

τ

0.2
0.4
0.6
0.8
1.
p(t)

Initial

2π

5

π

4
π

6

0.2 0.4 0.6 0.8 1.0
t

τ

0.2
0.4
0.6
0.8
1.
p(t)

Figure 2.5: (a) The solid blue line shows the (square of the) geometric TD speed limit for the
generalised amplitude damping channel with β = 0.5 (arbitrarily chosen). This QSL time is
independent of p(t) as long as ṗ(t)> 0. The purple points represent the value of the TD action
QSL for our initial guess of constant ṗ(t). The red points are the value of the TD action speed
limit after optimising over all admissible ṗ(t) with the desired start and end points. These points
lie on the blue line demonstrating that we can use optimal control to saturate equation (2.100).
(b) Shows the optimal function p(t) for various values of θ as compared to our initial guess. (c)
and (d) Are as for panels (a) and (b) except applied to the QFI speed limit. (e) and (f) Are as
for panels (a) and (b) except applied to the WY speed limit.

MT bound, but this is not so simple in general. An alternative approach is to make use of optimal
control techniques. We will constrain our evolution to a fixed path and a fixed driving time with
freedom to change the instantaneous speed along the path. An example of this would be the path
followed by the GADC used in Section 2.3. To explicitly account for the time-dependence along
the path, we express this channel using the Kraus operators,

K0(t) =
√
c

(√
1 − p(t) 0

0 1

)
,K1(t) =

√
c

(
0 0√
p(t) 0

)
, (2.103)

K2(t) =
√

1 − c

(
1 0
0
√

1 − p(t)

)
,K3(t) =

√
1 − c

(
0
√
p(t)

0 0

)
, (2.104)

where c= 1
2(1 + tanh β) and with β being the inverse temperature of the bath. The path is fixed

by the value of β, while p(t) describes how that path is traversed and must satisfy p(0) = 0 and
p(τ) = 1.

To identify the optimal time-dependent profile p(t) for the dynamics we can make use of
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Pontryagin’s optimum principle [21, 122, 130]. The cost functional that we want to minimise is
the action along our path,

aγf =
∫ τ

0
dt

M∑
jk=1

gjk
dθj
dt

dθk
dt

≡
∫ τ

0
dtL (ρ(t), ρ̇(t), ṗ(t)). (2.105)

In analogy with classical Lagrangian mechanics we can define the control Lagrangian, L (ρ(t), ρ̇(t), ṗ(t))
of the dynamics. ṗ(t) is simply the time derivative of the ramp profile and can be thought of as
the external control parameter. The difference between this method and just solving the Euler
Lagrange equations is that we are not simply minimising the action but finding the protocol p(t)
that minimises the action subject to fixed initial and final states and fixed total evolution time.
We then take the Legendre transform of the control Lagrangian to get the control Hamiltonian,
which is analogous to the Hamiltonian in classical Hamiltonian mechanics. It is metric dependent
and has no relation to the Hamiltonian that appears in the Schrödinger equation. We can now
apply Pontryagin’s optimum principle which states that the control protocol ṗ∗(t) that minimises
our action is given by,

H(ṗ∗(t)) = sup
ṗ(t)∈A

H(ṗ(t)). (2.106)

Here A represents the set of all admissible profiles. The advantage of transforming to the Hamil-
tonian is that it allows us to find the optimal profile by a point-wise optimisation rather than an
optimisation of the action over the full function space of p(t).

It is important to stress that to optimise the dynamics we must saturate the Cauchy-Schwarz
inequality, which corresponds to finding the ramp profile that results in a constant speed in the
metric. As we demonstrate by explicit example for non-geodesic paths, achieving a constant speed
in the metric generally requires a non-trivial temporal ramp profile. In this case, the set of all
admissible profiles A corresponds to all profiles that map our pure initial state to the thermal
state, i.e. ∫ τ

0
dt ṗ(t) = p(τ) − p(0) = 1. (2.107)

In order to perform the optimisation, we use a modified gradient descent algorithm,

ṗn+1 = ṗn + ϵ

(
∂Hn

∂ṗ
− 1
τ

∫ τ

0
dt
∂Hn

∂ṗ

)
. (2.108)

We add the final term in order to guarantee that Eq. (2.107) is always satisfied.
In Fig. 2.5 we display the result of the numerical implementation of optimal control strategies

on ṗ(t) and their impact on the associated QSL. First, it is immediately evident from Fig. 2.5(a)
that different profiles of p(t) (shown as dotted curves) lead to vastly different values of the action-
QSL bound. We initially start by guessing that the optimal profile is a linear ramp p(t) = t/τ ,
then we apply our modified gradient descent algorithm until we maximise the control Hamiltonian.
We can see that, except for some specific initial states in the TD metric, the linear ramp (lower,
purple dots) is clearly a non-optimal solution, as it results in a value markedly below the tightest
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theoretical bound given by the geometric QSL (blue solid curve), Eq. (2.100). A fully optimized
ṗ(t) (red dots) demonstrates that we can saturate Eq. (2.100). In contrast, however, evaluating
Eq. (2.70) using these two ramp profiles gives the same result (the solid blue curve in Fig. 2.5)
thus confirming that geometric QSLs are insensitive to the instantaneous speed. In Fig. 2.5(b) we
show the optimal profiles p(t) which result in a constant metric speed, for different values of θ,
i.e. for different fixed paths. A completely analogous treatment can be implemented for any other
metric, e.g. for the QFI and WY action introduced above. The optimal protocols for p(t) will of
course be different given choice and path as determined by θ. This is shown in Fig. (2.5)(c)-(f)
for the QFI and for the WY metrics, thus demonstrating the general validity of our approach.

2.6 Impact on the Interpretation of QSLs

The results of this chapter significantly clarify the interpretation of QSLs. Traditionally, they have
been interpreted as putting a fundamental lower limit on the evolution of a system between an
initial and a final state, but this is only one way to interpret them and often obscures precisely
what the determination of a QSL is actually revealing. Almost all QSLs take the form

τ ≥ τQSL = f(ρ0, ρτ )
g(γ) (2.109)

where τ is the total system evolution time, f is a distance-like function that depends exclusively
on the initial and final state of the system and g is a function that depends on the path, γ, taken
between the initial and final states, i.e. depends on ρt for 0 ≤ t ≤ τ . In order to understand
what it would mean to achieve or saturate any QSL bound it is important to fix any two of
the three quantities in this inequality. Allowing more than one quantity to vary would lead to
significant ambiguity in the interpretation, for example if we keep only the distance fixed in the
MT bound, Eq. (2.13), then the minimum time is not meaningful because we can always increase
the variance of our Hamiltonian and reduce the minimum time. The most common way to interpret
the quantum speed limit is to fix both f(ρ0, ρτ ) and g(γ). It is important to note that we are
not fixing the path, γ, itself only the real number output of g(γ). It is usually assumed that
the initial and final states are fixed, although this is not necessary for this interpretation to hold,
only that f(ρ0, ρτ ) is fixed. In this interpretation, the QSL is a statement that τ is the minimum
possible time for a system to evolve between two states a “distance”, f(ρ0, ρτ ), apart subject to
the constraint that g(γ) is fixed for the evolution path. If a QSL is always saturable this means
that there always exists such a path γ that saturates Eq. (2.109). This interpretation is most
insightful when the quantity g(γ) corresponds to an important property of our system that we
need to keep fixed. Another approach would be to fix the evolution time and g(γ) and allow only
the “distance” between states to vary. The QSL bound can then be interpreted as the maximum
possible “distance” a system could have evolved from an initial state for a specific value of g(γ).
This interpretation might be used when we want to maximise distinguishability between two states
such as for measurement purposes [131] or when we want to minimise the effect of noise on
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our system evolution [132]. The final interpretation involves fixing the evolution time and the
“distance” between the initial and final states. In this case the QSL bound tells us the minimum
possible value of g(γ) for any evolution path between states a “distance” f(ρ0, ρτ ) away from
each other with an evolution time τ . This interpretation is most relevant when we want to keep
a fixed evolution time and minimising the value of g(γ) is important to us.

All of these interpretations highlight the fact that it is important that the quantity g(γ) is
physically meaningful, but it is the final interpretation that emphasises this the most. We can
understand the path that saturates the QSL as the path that minimises g(γ) so it is vital that we
choose a QSL bound that corresponds to a quantity g(γ) that we want to minimise. This provided
a significant portion of the motivation for introducing action QSLs.

Experiments and theoretical work relating to QSLs have often focused on reducing the QSL
time such as by adding non-Markovianity [66,133] but, as the above analysis highlights, it is more
important that we look for processes that saturate the QSL bound because it will always be possible
to lower the QSL time by increasing g(λ). There has been a number of papers comparing optimal
control times to quantum speed limit times [37,134,135] but not a lot of experimental realisations
of such scenarios. One recent paper investigated the experimental performance of the ML and
MT bounds for the motion of an atom in an optimal trap [45]. They found regimes where either
bound could be tighter, suggesting that neither bound fully captures the physics of the problem.
The MT bound has been shown to be practically relevant, at least in theory, in calculating the
charging time for a quantum battery with a constant interaction strength [136,137]. As far as we
know, there has yet to be any demonstration of an open system QSL linked to an experimentally
relevant optimisation.

A family of bounds that is similar in idea to QSLs is Lieb-Robinson bounds [138]. Lieb-
Robinson bounds put a fundamental limit on the maximum velocity that correlations can spread
through many-body quantum systems. Despite this similarity, no clear relation has been shown
between the two bounds [100]. This highlights the fact that QSLs often neglect some practical
considerations in systems such as the need for local interactions. While it is possible to apply the
restriction of local interactions to QSLs [139] it is often more fruitful to apply techniques such as
optimal control or Lieb-Robinson bounds in these scenarios.

Although we have only considered qubit systems in this analysis, the QSLs considered apply
to systems of any dimension. One interesting property of geometric QSLs is that the optimal path
between any two states is always contained within the span of the initial and final states [78]. In
particular, this means that the Hilbert space needed to describe the optimal evolution between any
two pure states is always two dimensional. We proved this for the MT bound in Eq. (2.34) but
this applies more generally for all bounds considered in this Chapter so the Bloch sphere picture
is not as restrictive as it may initially seem.

For action QSLs, the relationship between the action and classical Lagrangian mechanics
means that it is natural to incorporate certain kinds of constraints, specifically those that can
be formulated as a Lagrange multiplier problem where we restrict to a submanifold of states that
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connect our initial and final states. It is an open question as to whether it is possible to incorporate
constraints that restrict the kinds of system Hamiltonians or interactions that our system is subject
to such as the local interactions considered in Lieb-Robinson bounds.

2.7 Conclusions and Outlook

In this chapter we introduced the notion of a quantum speed limit and showed how Riemannian
geometry can be used to extend the concept to open quantum systems. If one has the freedom to
choose any path connecting two states, then any and all of the infinite families of geometric QSL
are saturable. While the existence of a unique and tightest lower bound for the evolution time
is guaranteed once a path and dynamics are completely specified, these constraints necessarily
leave no room for optimization if the dynamics does not already coincide with a geodesic path.
Therefore, care must be taken in interpreting open system geometric QSL times: they provide
a quantitative indication of how far a given path is from the geodesic rather than necessarily
indicating an achievable minimal time. We also highlighted that these geometric QSL times are
insensitive to how this path is traversed and are therefore agnostic to the instantaneous speed.

Nevertheless, this speed is an important and tunable degree of freedom. We have introduced a
novel family of QSLs, termed action quantum speed limits, that explicitly depend on both the path
and the instantaneous speed for a given metric. Our derivation relied on the same geometrical rep-
resentation of quantum states and followed from the application of the Cauchy-Schwartz inequality
to the path length. We established that the bound provided by the geometric QSL coincides with
a special instance of the action QSL, specifically when the instantaneous speed of the latter is
fully optimized along the path. We explicitly demonstrated this using optimal control techniques
applied to a qubit undergoing a dynamics described in terms of a generalized amplitude damping
channel for three choices of metric, the trace-distance, quantum Fisher information, and Wigner-
Yanase skew information. While our formulation applies to arbitrary finite-dimensional systems, we
expect that solving the optimal control problem becomes computationally more demanding for in-
creasing system size. Our results provide a means to quantitatively assess the optimality of a given
dynamical process from a purely geometric perspective. In addition, we have highlighted that the
geometric formulation of quantum speed limits can be combined with optimal control techniques
to characterise a particular dynamics; such an approach could be employed to find achievable
minimal times for a given process [20,55,98]. Our results may also be relevant to recent proposals
employing optimal control in dynamical quantum estimation schemes [127–129,140]. Furthermore,
our framework can naturally be extended to recently proposed resource speed limits [75,141].

The Morozova-Chentzov-Petz metrics have proved to be useful in slow-driving quantum ther-
modynamics [120,126,142], this opens the door for a connection between action QSLs and quan-
tum thermodynamics. It has been shown that when the Hamiltonian is changed in a sequence of
quenches followed by full thermalisation of the system the dissipated work can be calculated up
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to first order as
⟨Wdiss⟩ = βτeq

∫ τ

0
dt

m∑
j,k

gbj,k
dθj

dt

dθk

dt
. (2.110)

We define τ = τeqN , where τeq is the equilibration time and N is the total number of quenches.
Unfortunately, the geodesic distance is not known for the Bogoliubov metric gb but it can be lower
bounded by the geodesic distance in the WY metric (2.76). We can use this to get an action QSL
style bound,

τ ≥ 2kBTτeq
Lb(ρ0, ρτ )2

⟨Wdiss⟩
≥ 2kBTτeq

arccos
(
Tr
[√
ρ0

√
ρτ
])2

⟨Wdiss⟩
. (2.111)

The same first order approximation for the dissipated work can be derived [120] by considering
the master equation,

ρ̇t = τ−1
eq (πt − ρt), (2.112)

where πt = e−βHt/Tr
(
e−βHt

)
is the Gibbs equilibrium state. One further research direction would

be to see if other master equations can also give rise to speed limit like approximations.
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Chapter 3

Correlated Quantum Metrology

Measurement is an essential part of every area of physics from detecting gravitational waves
to calibrating lab equipment. Metrology is the study of estimating unknown parameters of a
system through measurement. In Chapter 2 we saw that the quantum Fisher information is a
measure of the infinitesimal distance between quantum states. We used that fact to calculate
the average speed of a quantum state along its trajectory. The Fisher information is also a
central quantity in the field of metrology, here the Fisher information is used as a measure of
statistical distinguishability. The Cramér-Rao bound puts an upper limit on accuracy with which
an unknown parameter can be estimated in terms of the statistical distinguishability. Performing
measurements on a quantum system adds several interesting subtleties to the metrology process.
When we perform a quantum measurement the result of the measurement influences the state of
the system after the measurement. This means that the result of any subsequent measurement can
be correlated with the results of the previous measurements. Additionally, using quantum systems
allows for freedom in the measurement basis and more general measurements in the form of positive
operator-valued measures (POVMs). In this chapter we once again make use of the generalised
amplitude damping channel (GADC) as an example system to demonstrate and characterise the
effects of temperature on open system dynamics. The Chapter is split into two main parts, in
Secs 3.1 and 3.2 we introduce the necessary mathematical material to understand our sequential
measurement metrology scheme presented from Sec. 3.3 to Sec 3.5. In Secs 3.6.1 and 3.6.2 we
recapitulate the collisional thermometry scheme presented in Refs [143,144] before expanding their
analysis to include the presence of stochasticity at the level of the waiting time between collisions,
as well as connecting these results to the sequential measurement scheme presented earlier. The
main results, and the calculations that generated them, were predominantly done by me with the
assistance of collaborators.

3.1 Introduction

The goal when performing a measurement is to determine the value of an unknown parameter.
Often it is not possible to exactly determine the value of this parameter either due to statistical
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noise or more fundamental considerations such as Heisenberg’s uncertainty principle as discussed
in the Chapter 2. The Cramér-Rao bound [102, 103] allows us to put a fundamental limit on
the variance σθ of any unbiased estimator of the parameter θ in terms of the Fisher information
associated with those measurements,

σθ ≥ 1
F1:N (θ) , (3.1)

where F1:N (θ) is the Fisher information associated with the outcomes of N measurements. When
the outcomes of these N measurements are independent and identically distributed (iid), the Fisher
information reduces to F1:N (θ) = NF1(θ). This would be the case, for example, if N probes were
allowed to fully thermalise with a large bath and then each was measured.

There are many ways to approach metrology, in this chapter we consider two distinct but
closely related approaches, with a particular focus on the estimation of the temperature of a
quantum system. Firstly, a sequential measurement setup, this involves having a probe system
that can be coupled to an environment and performing measurements on the system at discrete
time intervals. The advantages of this approach over standard, probe-based thermometry include
that we only need a single probe that is reused in each measurement as opposed to a fresh probe
for each measurement. We are also performing measurements on a small system as opposed
to a full energy measurement on the environment. Crucially, the sequential measurement setup
generates correlations between the measurements and allows the exploitation of these correlations
in order to increase the Fisher information. One potential drawback is that it often does not take
advantage of the quantum nature of the problem and when it does, the Fisher information can
become impractical to calculate.

Another approach we consider is a collisional metrology approach where the measurement is
no longer performed on the system itself, but on an auxiliary system that has previously interacted
with the system itself. This approach allows for specific kinds of POVMs to be applied easily.
It also allows for entanglement to be built up between a number of auxiliary units before the
measurement is performed. The main drawback is that it requires a large degree of control over
a collisional bath which may not be realistic in practice. Collision models have been used in a
wide range of topics in quantum physics; for an in-depth review see Ref. [145]. This framework
has been extended to correlated input states and different kinds of interactions [144], as well
as possible estimation schemes for post-processing [146]. We extend this collisional approach to
allow for stochasticity in the waiting times between the collisions. We show that introducing this
stochasticity leads to a broadening range of parameters in which a meaningful advantage can be
gained.

We will apply both approaches to the problem of thermometry. Accurately determining the
temperature of a physical system is a ubiquitous task. For quantum systems, measuring the tem-
perature becomes a significantly more involved job, in part due to the inherent fragility of quantum
states, and more pointedly, because temperature itself is not a quantum observable. Recently, sig-
nificant advances in thermometry schemes for quantum systems have been proposed [147–152]
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(see Ref. [153] for an extensive review). The thermometric precision of a probe in equilibrium with
the sample is limited by the thermal Cramér-Rao bound, which is inversely proportional to the
heat capacity, C, of the thermometer: (∆T/T )2 ≥ kB/NC. However, quantum systems have the
additional freedom to exploit resources such as entanglement [154,155] and coherence [156–158]
to gain an advantage over their classical counterpart [54, 159–166]. By making use of these
resources, along with correlations between measurement results, it is possible to surpass the ther-
mal Cramér-Rao bound. Interestingly, we establish that the greatest advantage can be gained
using purely classical correlations and, therefore, the demonstrated advantage can be gained by
performing simple single-qubit measurements.

The remainder of the Chapter is organized as follows. In the rest of the introduction, we define
the Fisher information and its quantum generalisation and show how they bound the precision of
parameter estimation. In Secs. 3.2 and 3.3 we introduce the sequential measurement scheme and
investigate the effects it has on the Fisher information in the presence of different kinds of correla-
tions. We prove in Sec 3.4 that under certain conditions the Fisher information of the sequential
measurement scheme can be related to a coarse-grained measurement on the environment. We
also discuss possible benchmarks of the scheme. In Sec 3.5 we use the sequential measurement
scheme to estimate the temperature of a thermal bath. Sec. 3.6 gives an outline of the various
topics and techniques employed in collisional quantum thermometry. These techniques are then
examined more closely to determine the exact role of correlations and the free parameters. In
Sec. 3.6.3 we introduce stochasticity at the level of the waiting time between collisions. We anal-
yse how this stochasticity affects the precision of the measurements and the form of the optimal
measurements. We also discuss how our results extend to different forms of measurements. Some
of the following results are based on the work in Ref. [2]. Finally, our conclusions and some further
discussions are presented in Sec. 3.7.

3.1.1 Estimation theory

In Sec. 2.2 we considered a real-valued random variable X : Ω → R with a space of possible
outcomes, ω ∈ Ω. Each of these outcomes occurs with probability p(ω). We can generalise
this concept to a collection of N random variables X1:N = X1, ..., XN which can in principle be
correlated. These random variables then have an associated probability distribution p(ω1:N ). This
probability distribution is parameterized by a vector of real numbers θ = (θ1, ...θk). An estimator
T is then a function that maps a set of measurement outcomes ω1:N = {ω1, ..., ωN} to an estimate
for the parameter vector, θ̃. An estimator T is said to be unbiased if ⟨T (X1:N )−θ⟩pθ

= 0. Where
the inner product is defined in the same way as in Sec. 2.2 as

⟨A,B⟩p =
∑
ω∈Ω

A(ω)B(ω)p(ω). (3.2)
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We can also define the notion of a covariance matrix σij for the estimator T

σij = ⟨(θ̃i − θi), (θ̃j − θj)⟩pθ
. (3.3)

In complete analogy with Eq.(2.39) we can define the Fisher information matrix as

[F1:N ]ij =
〈
∂

∂θi
log pθ(ω1:N ), ∂

∂θj
log pθ(ω1:N )

〉
pθ

. (3.4)

It is then possible to prove the multi-parameter Cramér-Rao bound [103,167]

σ − (F1:N )−1 ≥ 0, (3.5)

meaning the difference in the two matrices is positive semi-definite. F−1
1:N denotes the matrix

inverse of the Fisher information matrix.

3.1.2 Quantum estimation theory

A number of things change when we go from classical probability distributions, pθ, to quantum
density matrices ρθ. We can have not just classical correlations between our systems, but also
quantum correlations, such as entanglement. This allows for the Fisher information of a quantum
system to scale with the number of subsystems squared, as opposed to linearly when no quantum
correlations are present. We also have additional choices with respect to our measurements. As
we discussed in the Chapter 1, the most general evolution of a quantum state that is initially
uncorrelated with its environment is described by a completely positive trace-preserving (CPTP)
map,

E(ρS) = trE
{
U(ρS ⊗ ρE)U †

}
=
∑
i

KiρSK
†
i , (3.6)

where {Ki} are the Kraus operators and satisfy ∑iK
†
iKi = I. For quantum systems, the most

general measurement that we can perform is a positive operator-valued measure (POVM), E,
defined as a set of positive-definite Hermitian matrices {Eω} that satisfy the condition∑ω Eω = I,
where ω ∈ Ω is the set of possible measurement outcomes. When the result of the measurement
is ω, corresponding to Mω, the resulting state of the system after the measurement is given by,

ρωS = MωρSM
†
ω

Tr
(
MωρSM

†
ω

) , (3.7)

where M †ωMω = Eω. This means that the outcome of a POVM is not necessarily a pure quantum
state but is instead a mixture. From this definition of Mω we can see that it is not unique because
we can always multiply it by a unitary matrix on the left and satisfy M †ωU †UMω = M †ωMω = Eω.
Despite this arbitrariness the probability of obtaining the measurement result ω from the POVM
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only depends on Eω,
p(ω) = Tr [ρSEω] . (3.8)

Finally, we must generalise the classical Fisher information to apply to quantum systems. As
we saw in Sec. 2.2, there are infinitely many ways that the classical Fisher information can be
generalised. The problem for quantum speed limits is that we are dealing with a ratio of two
quantities, the path length, and the geodesic length, that both depend on the generalisation of
the Fisher information. Luckily, for metrology, the quantum Cramér-Rao bound only has the Fisher
information in the denominator, therefore the generalisation of the Fisher information that leads
to the tightest bound is the smallest one. This happens to always be the one generated by the
symmetric logarithmic derivative inner product, which we will call the quantum Fisher information
from now on. We can now define the quantum Cramér-Rao bound as

σ2 − (F1:N )−1 ≥ 0 (3.9)

where F1:N is the quantum Fisher information matrix,

[F1:N ]i,j = 1
2 Tr(ρ{Li, Lj}), (3.10)

and Li is the symmetric logarithmic derivative defined implicitly as

∂

∂θi
ρ = 1

2(ρLi + Liρ). (3.11)

The quantum Fisher information can also be defined as the classical Fisher information maximised
over all possible POVMs. From this point onwards, for simplicity we will just consider the case
of single parameter estimation. More information on multiparameter concepts can be found in
Ref. [168].

3.2 The Fisher information of correlated processes

Accurately determining the parameter θ will require multiple measurements to be performed and
this can be achieved in a number of ways. As mentioned in the introduction, when the outcomes
of our measurements are iid, the Fisher information scales as F1:N = NF1. An example of an iid
scheme would be to prepare multiple probes in the same initial state ρ0

S . Each of these probes
then interact with the environment in an identical manner. This will be iid in the limit where the
weak coupling, Eq. (1.25), and Markovian approximations hold, such as when the environment is
very large and the environment correlation timescale is short compared to the system evolution
timescale in the interaction picture. We could relax the identically distributed condition by having
probes prepared in different initial states, or by performing a different interaction on each probe.
The Fisher information in this case still takes the compact form, F1:N =

∑N
i=1 Fi. When we remove

the independence requirement and allow correlation this equality no longer holds. Additionally, we
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cannot say anything about their relative sizes in full generality, i.e.

F1:N ≶
N∑
i=1

Fi. (3.12)

Obviously the Cramér-Rao bound,Eq. (3.1), still holds and it is not possible to achieve higher
estimation precision by considering the individual measurement distributions separately but it can
be a useful benchmark to compare the Fisher information of a correlated process to that of an
equivalent independent process to determine if the correlations provide additional precision.

An alternative approach that allows for correlations to be generated is to employ a sequential
measurement scheme, where the probe is reused after each measurement [169–173], i.e. after
each measurement is performed the same probe is allowed to interact with the environment again.
This means that the probe state at the start of each interaction cycle will depend on the result
of the previous measurements, therefore the results of the measurements are correlated with each
other. We once again assume that the system and environment can be approximated as being in
a product state, for example, via the weak coupling approximation, or in a collision model setup.
If this assumption fails to hold, the evolution of the system between measurements will no longer
be described by a CPTP map. We define the map Φω(ϱ) that represents one iteration of the
sequential measurement process with a specific measurement outcome,

Φω(ϱ) = Eω
 MωϱM

†
ω

Tr
(
MωϱM

†
ω

)
 , (3.13)

where the superscript on Eω denotes that the map applied can depend on the result of the
measurement. This means that the state of the system after N measurements with measurement
results ω1:N = {ω1, . . . , ωN} is given by

ρω1:N
S = ΦωN ◦ · · · ◦ Φω1(ρ0

S). (3.14)

The probability of obtaining outcome ωN+1 on the next measurement is then

p(ωN+1|ω1:N ) = Tr
(
ρω1:N
S EωN+1

)
, (3.15)

with Eωi = M †ωi
Mωi . It follows that the Fisher information of this measurement can be calculated

as
F (ΩN+1|Ω1:N = ω1:N ) =

∑
ωN+1∈ΩN+1

1
p(ωN+1|ω1:N )

(
∂

∂θ
p(ωN+1|ω1:N )

)2
. (3.16)

The average Fisher information on the (N + 1)th measurement can be calculated by averaging
over all measurement outcomes ωN for the first N measurements,

F (ΩN+1|Ω1:N ) =
∑

ω1:N∈Ω1:N

p(ω1:N )F (ΩN+1|Ω1:N = ω1:N ). (3.17)
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We can calculate p(ω1:N ) by combining the fact that

p(A|B) = p(A,B)
p(B) , (3.18)

with Eq. (3.15) and to get,

p(ω1:N ) = p(ωN |ω1:N−1)p(ω1:N−1) (3.19)

=
N−1∏
i=1

p(ωi+1|ω1:i)

=
N−1∏
i=1

Tr
(
ρ

ω1:i−1
S Eωi

)
.

Subbing this property into the Fisher information results in the following the additivity rela-
tion [174]

F (A|B) = F (A,B) − F (B). (3.20)

By applying this property iteratively in exact analogy to Eq. (3.19) we get

F1:N ≡ F (Ω1:N ) = F (Ω1) +
N∑
i=2

F (Ωi|Ω1:i−1). (3.21)

For a general POVM, Eq. (3.21) is clearly a complicated object but we will see that under certain
conditions this formula can significantly reduce in complexity.

3.2.1 Markov order

If we look at the individual terms in Eq. (3.21), F (Ωk|Ω1:k−1), we could imagine a scenario where
the Fisher information does not depend on the result of all previous measurements, but say only
Mk previous measurements. We can define Mk by

Mk = min{ℓ s.t. p(Ωk|Ωk−1−ℓ:k−1) = p(Ωk|Ω1:k−1)}, (3.22)

i.e. the number of previous measurements that need to be considered to fully determine the
probability distribution of the kth measurement [175]. Then the Markov order of the entire
process can be defined as the largest Mk: M = maxk Mk. This value can then be thought
of as the memory depth of the system. We can then use this property to separate the terms in
Eq. (3.21) giving,

F1:N = F1:M +
N−M∑
k=1

FM+k|k:M+k−1, (3.23)

where we have defined
Fi+j|j:i+j−1 = F (Ωi+j |Ωj:i+j−1). (3.24)
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Then if the process is a stationary process, i.e. it satisfies

p(Ωk:m) = p(Ωk+ℓ:m+ℓ) (3.25)

for any integers k,m, l with m > k, k > M and l ≥ 0 we can further simplify [175] Eq. (3.23) to

F1:N = F1:M + (N − M)FM+1|1:M . (3.26)

In the limit of a large number of measurements the Fisher information can be approximated as

F1:N ≈ NFM+1|1:M , (3.27)

or, more precisely, the Fisher information rate tends to

FM+1|1:M = lim
N→∞

F1:N
N

. (3.28)

This will be, in principle, significantly easier to calculate than the entire Fisher information.

3.3 Sequential measurement metrology

If we perform a POVM on our system but ignore the measurement result we must average over
the state of our system for all measurement outcomes

ρΩ
S =

∑
ω

p(ω)ρωS =
∑
ω

p(ω)MωρSM
†
ω

p(ω) =
∑
ω

MωρSM
†
ω. (3.29)

We see that the result of performing a POVM and ignoring the measurement result is a CPTP
map. We can apply a similar treatment to the sequential measurement process,

ΦΩi(ρ) =
∑
ωi

p(ωi)Φωi(ρ) (3.30)

=
∑
ωi

Eωi

(
MωiρM

†
ωi

)
,

which results in another CPTP map. The quantum equivalent of a stationary process is a steady
state or fixed point, ρ∗, of a CPTP map that satisfies,

ΦΩi(ρ∗) = ρ∗. (3.31)

The steady state of Φ can in principle be different from E . In this scenario the steady state of
Φ would represent a stroboscopic steady state [143] that is reached periodically after both the
measurement map and E have been applied. If we assume that the map ΦΩi is the same for each
iteration and the initial state of the process is the steady state of Φ, the Fisher information will
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satisfy Eq. (3.26). In general, the process of applying the map, Φ, N times will have a Markov
order of N . However, in many cases the correlations between measurements decay exponentially
and therefore, a fixed Markov order becomes a great approximation. Such an example would when
the map ΦΩi is a mixing map [176], i.e. it satisfies

ΦΩN
◦ · · · ◦ ΦΩ1(ρ0

S) → ρ∗ N → ∞ (3.32)

for all initial states, ρ0
S , with a unique steady state ρ∗. In such cases it is also possible to show that

in the large N limit, both the measurement results, and the correlations between them satisfy the
central limit theorem and become approximately Gaussian [172]. This provides another method
of estimating the unknown parameter when the exact probability distribution is too difficult to
calculate. From here on, we will restrict our analysis to mixing maps which converge to a unique
steady state in largeN limit. Mixing maps have the property that they have a single non-degenerate
eigenvalue, of unit value, corresponding to the steady state [176]. It could be fruitful to examine
other families of CPTP maps with multiple fixed points, particularly if the behaviour of these fixed
points exhibit a strong dependence on the unknown parameter.

A particularly elegant and useful instance of fixed Markov order occurs when the POVM is a
projective measurement onto some basis {|k⟩}. In this case, the Markov order is M = 1 since the
projection erases all information about the previous state, giving us

F1:N = F1 + (N − 1)F2|1, (3.33)

with
F2|1 =

∑
k

qkF2|1=k. (3.34)

In exact analogy with Eq. (3.16) we have

F2|1=k =
∑
k′

1
P (k′|k)

(
∂

∂θ
P (k′|k)

)2
, (3.35)

and
P (k′|k) =

〈
k′
∣∣ Ek (|k⟩⟨k|)

∣∣k′〉 . (3.36)

Since we know that our initial state is a steady state of the map Φ this implies that qk in Eq. (3.34)
satisfies the steady state equation,

qk =
∑
k′

qk′P (k|k′). (3.37)

Projective measurements have the additional benefit of leaving the system and environment in
a product state after the measurement is performed. This allows us to describe the evolution
between measurements via a CPTP map even when strong quantum correleations are generated
between the system and environment. Allowing the map E to depend on the result of the previous
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measurement lets us incorporate feedback control [177, 178] into our setup which can allow us
to achieve larger amounts of precision. In our sequential measurement setup, the simplest and
most realistic way to incorporate measurement feedback would be to have a different waiting time
between measurements based on the result of the previous measurement.

3.4 Comparison to other strategies

As we proved in Eq. (3.12), correlations between measurement results does not necessarily provide
a boost to the achievable precision as quantified through the Fisher information. In the context
of our sequential measurement setup, this implies

F2|1 ≶ F1. (3.38)

A trivial example of a scenario where the addition of correlations has a negative effect is to
perform two projective measurements in the energy basis on the same closed quantum system. The
probability distribution of both of the measurements would be identical and therefore, F1 = F2,
but the result of the second measurement is always exactly the same as the first and therefore
contains no additional information about the unknown parameter, i.e. F1:2 = F1.

3.4.1 Comparison to F1

The most natural way to identify if the correlations are having a positive or negative effect on
the Fisher information would be to compare F2|1 to F1. Unfortunately, this comparison is not
always fair because information about F1 is not always easily obtainable. One important reason
for this is that the steady state of Φ will, in general, not be equal to the steady state of the
map E by itself and can have a complicated dependence on the unknown parameter θ. Even
estimating qk from a series of measurements ω1:N is not straightforward. This is because even
though the Fisher information F2|1 depends only on the result of the previous measurement, the
probability p(ωN+1|ω1:N ) depends on all previous measurements. Constructing an estimator for
qk from this data could be difficult, this is made even more challenging when qk depends on the
unknown parameter θ as we will discuss later on in Sec. 3.6.2. This problem and possible solutions
have been discussed recently in [179]. Even when we can create a reliable estimator for qk, F1 is
still not a reasonable comparison to F2|1 because there is no useful way to reliably generate F1

worth of Fisher information. The only way to reliably generate the steady state of Φ would be to
perform the map many times and forget all the measurement results but this is obviously not a
useful strategy.

There are certain edge cases where F1 is a useful benchmark, specifically when the steady
state of Φ is easy to prepare without explicit knowledge of θ. To make this clear we can consider a
specific example, the case of a partial swap interaction between two systems A and B. The unitary
that generates the partial swap between subsystems A and B is given by US = −i

√
1 − a2IAB+aS
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where S is the full swap operator between HA and HB, S(ρA ⊗ ρB)S = (ρB ⊗ ρA). The action
of this unitary on subsystem A is given by,

E(ρA) = TrB[US(ρA ⊗ ρB)U †S ] (3.39)
= (1 − a2)ρA + a2ρB + TrB[i

√
1 − a2(S(ρA ⊗ ρB) − (ρA ⊗ ρB)S)].

For sequential projective measurements we know that the initial state will always be a pure state
in the basis {k}, therefore, the final term in the above equation becomes

TrB[...] =
∑
n

pn TrB[i
√

1 − a2(S(
∣∣k′〉〈k′∣∣⊗ |n⟩⟨n|) − (

∣∣k′〉〈k′∣∣⊗ |n⟩⟨n|)S] (3.40)

=
∑
n

pni
√

1 − a2(
〈
k′
∣∣n〉 ∣∣k′〉〈n∣∣− 〈

n
∣∣k′〉 ∣∣n〉〈k′∣∣).

The only contribution of this term to P (k|k′) is,

⟨k|TrB[...]|k⟩ =
∑
n

pni
√

1 − a2(
〈
n
∣∣k′〉 ⟨k|n⟩

〈
k′
∣∣k〉−

〈
k′
∣∣n〉 〈k∣∣k′〉 ⟨n|k⟩) (3.41)

=
∑
n

pni
√

1 − a2(
〈
n
∣∣k′〉 ⟨k|n⟩ −

〈
k′
∣∣n〉 ⟨n|k⟩)δk,k′ = 0.

The final term has no contribution, meaning that,

P (k|k′) = ⟨k|E(
∣∣k′〉〈k′∣∣)|k⟩ = (1 − a2)δk,k′ + a2 ⟨k|ρB|k⟩ . (3.42)

Knowledge of P (k|k′) is sufficient to evaluate the steady state equation Eq. (3.37),

qk =
∑
k′

qk′P (k|k′) (3.43)

=
∑
k′

qk′

(
(1 − a2)δk,k′ + a2 ⟨k|ρB|k⟩

)
= qk(1 − a2) + a2 ⟨k|ρB|k⟩ .

Rearranging and solving this gives us the steady state,

qk = ⟨k|ρB|k⟩ . (3.44)

We can even calculate the Fisher information assuming that a is independent of θ

F2|1 ≤
∑
k′

qk′
∑
k

a4( ⟨k|∂θρB|k⟩)2

(1 − a2)δk,k′ + a2 ⟨k|ρB|k⟩
≤ a2F1 ≤ F1. (3.45)

This tells us that, for the partial swap, the addition of correlations is not advantageous when the
interaction strength, a, is independent of θ. When the interaction strength depends on θ this will
generate additional terms in the Fisher information that can be positive or negative.
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This is a very specific example where the steady state has a nice, closed form, and can be
prepared reliably without knowledge of θ, in general this is not possible. When the map E has a
unique steady state, it could be reasonable to compare F2|1 to the quantum Fisher information of
that steady state as was done in, e.g. Refs. [2, 143,144].

3.4.2 Comparison to Fiid

Perhaps a fairer, more meaningful comparison for F2|1 would be to prepare N different probes
in the same state and perform one iteration of the map E on each probe [173], followed by a
measurement. If we choose the initial state to be an element of the measurement basis, |k⟩, the
Fisher information of each probe, Fiid, will be exactly equal to F2|1=k. Then, it is clear from the
form of Eq. (3.34) that we can always choose the initial state, |k⟩, for which this Fisher information
is largest which means that Fiid ≥ F2|1. An obvious drawback of this setup is that it requires the
preparation of N probes in a specific initial state, and the best initial state might depend on the
unknown parameter of interest making choosing the optimal initial state problematic. Another
strategy would be to reset a single probe to the initial state after every measurement, but this could
take a long time, especially when the initial state is a pure state. Furthermore, this comparison
sheds no light on whether the correlations between the measurements have a positive or negative
effect on the achievable precision. In contrast, the sequential measurement setup needs only
one probe and with the relevance of the initial state being significantly diminished since all the
information about it is erased after the first measurement.

3.4.3 Comparison to coarse-grained measurements

Another interesting comparison is to a coarse-grained measurement on the environment with the
same number of outcomes as the dimension of our probe system. In Ref. [180] the authors proved
that when the environment is in a thermal state, the maximal information about the temperature
of the environment that can be obtained from a d dimensional probe is always less than or equal to
the information gained from the optimal coarse-grained measurement with d outcomes. We can
prove a more general result by considering the setup from Eq (3.6) of a general system-environment
evolution with U and ρS independent of θ and ρS =

∑
i si |si⟩⟨si|. When this is not the case, it is

possible to violate the following bound. The addition of an auxiliary system such as was considered
in Ref. [180], has no effect on the following proof as long as the auxiliary system also has no θ
dependence. Our first step is to derive the map E ′(ρE) = E(ρS),
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E(ρS) = TrE [U(ρS ⊗ ρE)U †] (3.46)
=
∑
i

(IS ⊗ ⟨bi|)[U(
∑
i

si |si⟩⟨si| ⊗ ρE)U †](IS ⊗ |bi⟩)

=
∑
i,j

sj(IS ⊗ ⟨bi|)[U(|sj⟩ ⊗ IE)(IS ⊗ ρE)(⟨sj | ⊗ IE)U †](IS ⊗ |bi⟩)

=
∑
i,j

sj [(IS ⊗ ⟨bi|)U(|sj⟩ ⊗ IE)]ρE [(⟨sj | ⊗ IE)U †(IS ⊗ |bi⟩)]

=
∑
i,j

Li,jρEL
†
i,j

= E ′(ρE),

where {|bi⟩} is an arbitrary basis of HE and Li,j = √
sj(IS ⊗ ⟨bi|)U(|sj⟩ ⊗ IE). It is clear the

Li,j is independent of θ as long as U is independent of θ. The quantum Fisher information
of E(ρS) is given by the Fisher information of the probabilities pi(E(ρS), Ei) = Tr[E(ρS)Ei]
maximised over all possible POVMs {Ei}. Where {Ei} is a set of Hermitian, positive semi-
definite matrices that sum to the identity. Let us now look at the quantum Fisher information of
E(ρS) = E ′(ρE) =

∑
i,j Li,jρEL

†
i,j . We will label the optimal POVM as {Fi},

pi(E(ρS), Fi) = pi(E ′(ρE), Fi) (3.47)

= Tr
[
E ′(ρE)Fi

]
= Tr

∑
j,k

Lj,kρEL
†
j,kFi


=
∑
j,k

Tr
[
Lj,kρEL

†
j,kFi

]
=
∑
j,k

Tr
[
ρEL

†
j,kFiLj,k

]

= Tr

ρE
∑
j,k

L†j,kFiLj,k

 .
We can now define a new set of matrices Gi =

∑
j,k L

†
j,kFiLj,k, it is important to note that {Gi}

has the same number of elements as {Fi}. Now we need to prove that {Gi} is a valid POVM
on HE . Since Fi is Hermitian, Gi clearly is too. A matrix is positive semi-definite if and only
if it can be decomposed into a product Fi = M †iMi. Since {Fi} is a POVM we know that it
can be decomposed. Therefore we can write Gi =

∑
j,k L

†
j,kM

†
iMiLj,k =

∑
j,kK

†
i,j,kKi,j,k with

Ki,j,k = MiLj,k. This means Gi is the sum of positive semi-definite matrices and is therefore also
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positive semi-definite. The last thing to show is that {Gi} sums to the identity,

∑
i

Gi =
∑
i

∑
j,k

L†j,kFiLj,k (3.48)

=
∑
j,k

L†j,k

(∑
i

Fi

)
Lj,k =

∑
j,k

L†j,kLj,k (3.49)

=
∑
j,k

sk(⟨sk| ⊗ IE)U †(IS ⊗ |bj⟩)(IS ⊗ ⟨bj |)U(|sk⟩ ⊗ IE)

=
∑
k

sk(⟨sk| ⊗ IE)U †(IS ⊗
∑
j

|bj⟩⟨bj |)U(|sk⟩ ⊗ IE)

=
∑
k

sk(⟨sk| ⊗ IE)U †U(|sk⟩ ⊗ IE)

=
∑
k

skIE = IE

This implies that the quantum Fisher information of E(ρS), F(E(ρS)) is upper bounded by the
optimal coarse-grained measurement on ρE with the same number of outcomes as the dimension
on ρS which we will denote by F (ρE , G∗i ). Finally, we know that F2|1=k = F (Ek′(|k′⟩⟨k′|), |k⟩⟨k|)
which implies

F2|1 =
∑
k′

qk′F2|1=k ≤
∑
k′

qk′F
(
Ek′ (∣∣k′〉〈k′∣∣)) (3.50)

≤
∑
k′

qk′F (ρE , G∗i ) = F (ρE , G∗i ). (3.51)

This gives us a final chain of inequalities when U and ρS in Eq. (3.6) are independent of θ

F2|1 ≤ Fiid ≤ F (ρE , G∗i ) (3.52)

where {G∗i } is the optimal coarse-grained measurement with the same dimension as ρS . This
result is also interesting when the environment has a smaller dimension than the system, such as
might be the case in a collision model setup. In this scenario, the Fisher information we can obtain
from measuring the system is bounded by the quantum Fisher information of the environment,
therefore larger probes are not necessarily more informative.

3.5 Sequential measurement thermometry

While Eq. (3.52) bounds how large the Fisher information of a sequential measurement process
can be when the interaction between probe and environment is independent of the parameter of
interest, θ, there are many relevant scenarios where U explicitly depends on θ. Such examples
include when θ is a property of the system Hamiltonian, such as the Rabi oscillation frequency [171]
or, as we will focus on in this Chapater, thermometry where the thermalisation rate of the system
depends on the temperature of the environment [143, 173]. In these cases, it is possible for
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the sequential measurement process to achieve a higher sensitivity over the alternative methods
discussed in the previous section.

We choose to focus on the problem of measuring the temperature of a bath that is coupled to
our probe system. The natural benchmark for any thermometry protocol is the quantum Fisher
information of a probe in thermal equilibrium. We are assuming that we do not have access to
measuring the bath itself so we will compare the sequential measurement scheme to a number of
thermal probes of the same dimension as the system. Once the probes have fully thermalised they
are in a state commonly referred to as the Gibbs state,

ρth = e−βHS

Tr [e−βHS ] , (3.53)

where β = 1
kBT

is the inverse temperature. The optimal measurement basis for such a system is
simply the energy basis which allows us to define the thermal Fisher information,

Fth = C

kBT 2 , C = ⟨H2
S⟩ − ⟨HS⟩2

kBT 2 , (3.54)

where C is the heat capacity of the probe, HS is the probe Hamiltonian. From here on out we
will use units of kB = 1. We consider the optimal N -level probes for estimating temperature in
the Gibbs state, derived by Correa et. al. [4], that consist of a non-degenerate ground state and
a single, (N − 1) degenerate excited state described by the Hamiltonian,

HS = e0 |e0⟩⟨e0| +
N−1∑
i=1

e1 |ei⟩⟨ei| , (3.55)

with energy spacing e0 − e1 = Ω. To find C, we need to calculate ⟨H2
S⟩ and ⟨HS⟩ with the

expectation value taken with respect to

ρth = e−βHS

Tr [e−βHS ] (3.56)

= 1
e−βe0 + (N − 1)e−βe1

(
e−βe0 |e0⟩⟨e0| +

N−1∑
i=1

e−βe1 |ei⟩⟨ei|
)

= 1
1 + (N − 1)eβΩ |e0⟩⟨e0| +

N−1∑
i=1

1
e−βΩ + (N − 1) |ei⟩⟨ei| .

Then using this to calculate the two expectation values gives,

⟨HS⟩2 = (Tr[HSρth])2 (3.57)

= 1
(e−βe0 + (N − 1)e−βe1)2

(
e0e
−βe0 + (N − 1)e1e

−βe1
)2

= 1
(1 + (N − 1)eβΩ)2

(
e0 + (N − 1)e1e

βΩ
)2
,
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and

⟨H2
S⟩ = Tr

[
H2
Sρth

]
(3.58)

= 1
e−βe0 + (N − 1)e−βe1

(
e2

0e
−βe0 + (N − 1)e2

1e
−βe1

)
= 1

1 + (N − 1)eβΩ

(
e2

0 + (N − 1)e2
1e
βΩ
)
.

Finally, subbing this into the thermal Fisher information we have

Fth = β4(⟨H2
S⟩ − ⟨HS⟩2) (3.59)

= β4

(
1 + (N − 1)eβΩ

) (
e2

0 + (N − 1)e2
1e
βΩ
)

−
(
e0 + (N − 1)e1e

βΩ
)2

(1 + (N − 1)eβΩ)2

= β4 (N − 1)Ω2eβΩ

(1 + (N − 1)eβΩ)2 .

One further step we can take is to make the substitution n̄ = 1/(eℏΩ/kBT − 1), n̄ is commonly
known as the mean occupation number. In terms of n̄ the thermal Fisher information is,

Fth = β4 (N − 1)Ω2n̄(1 + n̄)
(1 +Nn̄)2 (3.60)

= (N − 1)
n̄(1 + n̄)(1 +Nn̄)2

(
∂n̄

∂T

)2
.

This substitution is useful because when we are comparing our sequential measurement scheme to
the thermal Fisher information, the derivative will cancel and we can get results that only depend
on the ratio Ω/T .

Following Ref. [4], we model the environment as a bosonic heat bath. Our total Hamiltonian
is therefore

Htot = HS +
∑
µ

ωµb
†
µbµ +X ⊗ ωµgµ(bµ + b†µ), (3.61)

where X =
∑
i ̸=0 |e0⟩⟨ei|+ |ei⟩⟨e1| is a generalisation of σx to high dimensional probes. We choose

the coupling constant to be gµ = √
γωµ, implying a flat spectral density [151],

J(ω) ∝
∑
µ

g2
µ

ωµ
δ(ω − ωµ) = γ. (3.62)

Under the assumptions used in Chapter 1 a Lindblad master equation, Eq. (1.35), can be derived
that leads to the following evolution,

ρ̇ = γ(1 + n̄)D(ρ) + γn̄D†(ρ). (3.63)
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The dissipator,

D(ϱ) =
N−1∑
i=1

LiρL
†
i − 1

2{L†iLi, ρ}, (3.64)

with Li = |e0⟩⟨ei| describes the transitions from excited to ground states. The steady state of
this master equation is the Gibbs thermal state. Although the choice of a flat spectral density
may seem restrictive, Correa et al. [151] show that changing the spectral density is equivalent to
a re-scaling of the time parameter for the purpose of estimating the temperature. This implies
that the following analysis will hold for any spectral density as long as the environment correlation
timescale is sufficiently short (we refer the interested reader to Ref. [10] Section 3.4 for a more
detailed discussion of when the master equation formalism holds for different spectral densities).
For a two-level system this setup is a form of the spin-boson model [10, 181] and is also often
referred to as the generalised amplitude damping channel introduced in Chapter 2.

In the sequential measurement scheme, the state of the system before the measurement will
generally depend on the unknown temperature, but we can still say something about the steady
state, ΦΩi(ρ∗) = ρ∗ from Eq. (3.31) under certain conditions. We will choose to measure in the
energy basis of the system Hamiltonian and apply the same map regardless of the result of the
previous measurement. The energy basis is the optimal measurement basis for both the thermal
probes and the sequential measurement scheme, although we remark that the maximum Fisher
information is not significantly smaller for other measurement bases. By applying this map to the
Gibbs state,

ΦΩi(ρth) =
∑
ωi

E
(
MωiρthM

†
ωi

)
(3.65)

= E (|e0⟩⟨e0| ρth |e0⟩⟨e0|) +
N−1∑
i=1

E (|ei⟩⟨ei| ρth |ei⟩⟨ei|)

= E(ρth)

= ρth,

we can see that the Gibbs state is a steady state of the sequential measurement protocol. This
means that the steady state probabilities are given by the Boltzmann distribution, which for the
ground state gives,

p0 = e−βe0

e−βe0 + (N − 1)e−βe1
(3.66)

= 1
1 + (N − 1)eβΩ

= 1
1 + (N − 1) n̄

1+n̄

= 1 + n̄

1 +Nn̄
.
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Figure 3.1: Log plot of the Fisher information as a function of temperature of optimal N dimen-
sional probes [4] in their Gibbs state (dashed lines) and in the sequential measurement setup (solid
lines). The black dashed, dotted line represents the Fisher information of a harmonic oscillator in
the Gibbs state. We fix Ω = 1.

Given that the probabilities sum to 1 and all excited state probabilities are equal we get pi = n̄
1+Nn̄

for all i ̸= 0. This result applies to the behaviour of the system averaged over all measurement
results, for each individual measurement result the system is not in the Gibbs state when measured
because the state has not fully thermalised. This state can contain additional information about
the temperature in the form of the thermalisation rate [143], we can see that the master equation
depends on the temperature due to the presence of n̄. If the thermalisation rate was temperature
independent then the bound from Eq. (3.52) would apply and no advantage could be gained
from correlations. Another area that we can find advantage over the thermal Fisher information
is in the freedom to apply different quantum maps to our system depending on the result of
the previous measurement. In practice this could be quite difficult but one adjustment that we
can definitely make is to change the waiting time between measurements based on the result of
the previous measurement. This will change the map Ek, resulting in a different P (k|k′) and
consequently F2|1=k. Giving this additional freedom to the map means that our assumptions for
deriving Eq. (3.65) no longer hold and therefore, the steady state of this map is not necessarily
the Gibbs state. Still, in most cases repeated applications of the map ΦΩi will lead to the steady
state.

Correa et. al. [4] showed that these highly degenerate probes achieve the highest Fisher
information possible when optimised over the energy splitting, Ω. This means that there is a
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specific value of n̄ where the probes give the largest Fisher information. In general, since the
temperature is the unknown parameter that we are trying to estimate it is not always going to be
possible to select the frequency, Ω, such that n̄ is optimal. The optimal value of n̄ also depends on
the dimension of the probe, getting smaller as the number of degenerate excited states increases.
We can see these properties more explicitly when looking at Fig 3.1. The coloured, dashed lines
represent the Fisher information of the thermalised probes, FN

th , this peaks around T = 0.2 and
falls off very quickly with increasing temperature. Even though the Gibbs states of these probes
give the largest Fisher information when maximised over all values of Ω, they are not necessarily
optimal for a different value of n̄. If we look closely we can see that around T = 1, the Fisher
information of the thermal probes all cross and at T = 2, the N = 3 probe now has the largest
Fisher information and N = 6 the smallest. This is clear evidence that, these highly degenerate
probes are not optimal for all values of n̄. The solid lines correspond to the Fisher information
of the sequential measurement scheme where the measurement times have been optimized to
provide the largest possible Fisher information. In contrast to the thermal Fisher information, F2|1

continues to increase as the dimension of the probes increases for all values of n̄. For small values
of n̄ the FN

th is very similar to F2|1 but the scaling of F2|1 is significantly better in the large T limit.
Although the sequential measurement scheme provides no advantage at the optimal value of Ω, the
fact remains that this optimal value is itself temperature dependent. Thus, ensuring a higher Fisher
information in across a broader parameter range is still important when no prior information about
the temperature is available since it provides a more accurate means to identify the most relevant
parameter region, where more refined estimation techniques can then be applied. Additionally, the
sequential measurement scheme can allow for a shorter time between measurements because the
system does not need to fully thermalise after each measurement. Finally, the black dashed line
represents the Fisher information of a thermalised Harmonic oscillator which is fully determined
by the covariance matrix [151]

σT = coth
( Ω

2T

)
I2. (3.67)

The quantum Fisher information can then be calculated from the following expression [168],

Fho = Tr
[
Gθ

∂

∂θ
σT

]
. (3.68)

Gθ can be expressed as
Gθ = −4c2 − 1

4c2 + 1σy
(
∂

∂θ
J

)
σy, (3.69)

where c =
√

det σT and
J = σT

4c2 − 1 . (3.70)

Subbing Eq. (3.67) into this we get,

Fho =
Ω2 csch

(
Ω
2T

)2

8T 4 . (3.71)
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Figure 3.2: (a) The blue (orange) line shows the value of the Fisher information when the result
of the previous measurement was the ground (excited) state. The green line is the average Fisher
information, F2|1 that is obtained in each measurement of the sequential measurement process. We
(arbitrarily) fix N = 4. (b) The Fisher information of the Harmonic oscillator for various outcomes
of the energy measurement. The black dashed line shows the Fisher information averaged over all
measurement outcomes. In each of the above plots we have set n̄ = 1.

The optimal measurement is a projective measurement in the energy basis [180]. We see that it
has the smallest peak but also has the best scaling in the large T limit.

In Fig. 3.2(a), we (arbitrarily) fix N = 4 and demonstrate that the sequential measurement
scheme can achieve a significant advantage over Fth for n̄ = 1. These results are qualitatively
similar for all sufficiently large values of n̄ and in fact the advantage gets larger as n̄ gets larger at
the cost of the absolute value of the Fisher information getting smaller. Examining the positions
of the peaks in Fig. 3.2(a), it is evident that the optimal measurement time depends on the result
of the previous measurement. This also highlights the fact that the optimal waiting time for
Fiid will depend not only on the unknown parameter but also on the initial state chosen. The
difference in optimal measurement times opens up the possibility to achieve a higher precision by
varying the waiting time based on the previous measurement outcome. It is important to remark
that changing the measurement times also affects the steady state probabilities and, therefore,
we must optimise F2|1 over all possible waiting times between measurements. Since the excited
states are all degenerate in our system we need only consider two different waiting times, one for
when the previous measurement was e0 and one for e1.

We can consider a similar scenario for the harmonic oscillator. We use the same master
equation, Eq. (3.63), as the degenerate probes with system Hamiltonian

HS = Ω
(
â†â+ 1

2

)
(3.72)

and jump operators, L = {â, â†}. Since the total evolution is quadratic in both position and
momentum, Gaussianity will be preserved during the evolution [151,182]. As long as the first order
moments of the initial state are zero, the covariance matrix alone is still sufficient to determine
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Figure 3.3: (a) The blue (orange) line shows the optimal measurement time if the result of the
previous measurement was e0 (e1). The green line is the optimal measurement time if it is not
possible to choose a different measurement time based on the result of the previous measurement.
We (arbitrarily) fix N = 4. (b) The percentage increase in the quantum Fisher information if we
allow different measurement times based on the result of the previous measurement.

the Fisher information. Performing a projective measurement in the energy basis ensures that we
maximise the Fisher information and start in a pure state with zero first order moments of position
and momentum. The evolution of the covariance matrix over time is [151]

σk(t) = e−γt(1+n̄)σk(0) +
(
1 − e−γt(1+n̄)

)
σT (3.73)

=
(
e−Γho

(
k + 1

2

)
+
(
1 − e−Γho

)(
n̄+ 1

2

))
I2,

with Γho = γt(1 + n̄). This allows us to calculate the Fisher information from a specific measure-
ment outcome,

F2|1=k = 1
2

(
1 − eΓho + γt(k − n̄)

)2

(k − n̄2) + e2Γho n̄(1 + n̄) + e−Γho(k − n̄)(1 + 2n̄)

(
∂n̄

∂T

)2
. (3.74)

If the measurement time is the same for each measurement outcome then the steady state of the
map is the thermal state giving

qk = n̄k(1 + n̄)−(1+k). (3.75)

The full Fisher information can then, in principle, be calculated as

F2|1 =
∞∑
k=0

qkF2|1=k. (3.76)

The black, dashed line in Fig. 3.2(b) shows this Fisher information as a function of γτ at n̄. It seems
to be impossible to beat the thermal Fisher information on average with a fixed measurement time.
However, we can clearly see that when the previous measurement is the ground state, i.e. k = 0,
the Fisher information can be larger than the thermal Fisher information. This means that one
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simple strategy to surpass the thermal Fisher information would be to measure at the optimal time
when the previous measurement was the ground state and allow all other measurement outcomes
to fully thermalise. This will affect the steady state and therefore this strategy is not necessarily
optimal, but it is guaranteed to outperform the thermal Fisher information. For larger values of
n̄, states other than the ground state can also surpass the thermal Fisher information.

In Fig. 3.3(a) we shift back to the degenerate probes and calculate the optimal waiting times
between measurements, depending on the previous measurement outcome. We see that the
optimal waiting time is shorter if the previous measurement was the ground state, this makes
sense given the location of the peaks in Fig 3.2(a). The green “Together” line represents the
Fisher information that is obtainable when the measurement time is the same for both previous
measurement outcomes. The optimal measurements tend to scale as τ ∝ 1

n̄ as n̄ gets large. If we
now allowed different waiting times for different measurement outcomes, one might expect that
the waiting times that maximise the Fisher information are going to be equal to the location of the
peaks of the “ground” and “excited” curves respectively. While this is a good guess and will perform
well in most cases, these are not necessarily the optimal waiting times. This is because changing
the relative waiting times has the effect of changing the steady state distribution. So, for example,
in Fig. 3.3(a) we see that the maximum possible Fisher information achievable is larger when the
previous measurement was “ground”, therefore increasing the probability of measuring the ground
state has a positive effect on the Fisher information. This full optimisation is significantly more
difficult and has to be done numerically. In Fig. 3.3(b) we show the increase in Fisher information
that is possible if we allow this additional control over the waiting times. We see a significant
increase of 10 − 30% for different values of N . This scheme has the advantage that the increase
in Fisher information will only get larger as the number of measurement outcomes increases
although for projective measurements F2|1 is still always bounded by the Fisher information of a
probe initialised in the best measurement state.

We have demonstrated that the sequential measurement approach is not only more realisti-
cally implementable than many probe-based schemes but can also provide better measurement
accuracy by exploiting correlations between measurement outcomes. These results bear a striking
resemblance to the work on collisional quantum metrology [143, 144]. There it is shown that the
Fisher information of certain collisional schemes can be expressed in the form [144]

F = Fth + (N − 1)∆. (3.77)

This is exactly the same form as Eq. (3.33), we will explore this curious connection more concretely
in the remainder of this chapter. We will show that collisional metrology can be thought of as
method of implementing sequential measurement thermometry with specific POVMs. We find
that collisional metrology gives us some additional freedoms that could be exploited to increase
the Fisher information. Finally, we explore concepts such as multi-parameter dependence and
stochastic waiting times and the effect that they have on the Fisher information.
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Figure 3.4: (a) Collision model diagram. (b) Schematic of the collisional thermometry scheme.

3.6 Collisional metrology

3.6.1 Introduction to collision models

Collision models are a method of simulating quantum systems that involves repeated, pairwise,
unitary interactions between the system and a collection of auxiliary units. Collision models have
applicability in a wide range of fields such quantum optics [183,184], non-Markovian dynamics [185,
186] and quantum thermodynamics [187]. The most common usage of collision models is in
the simulation of (possibly complicated) system-bath dynamics by decomposing it into a set of
repeated collisions with individual parts of the bath. This is both a useful tool for simplifying
the simulation of system-environment dynamics but also a realistic model of what is actually
occurring, since environments are made up of many individual particles. There are still limitations
on the kinds of environments that collision models can model relaistically simulate because we
usually assume that the environment correlations decay before the next collision happens, i.e. the
Markov approximation considered in Chapter 1 applies or we assume that the correlations take
a very specific form given by interactions between subsequent auxiliary units [186]. Although
the most common usage of collision models is in simulating system-environment dynamics, the
collision model framework is much more general in scope. In fact, some of the original works
involving collision model setups involved classifying weak measurements [188] and describing the
micromaser [189]. The micromaser features atoms interacting one at a time with a lossy cavity
mode and so is modeled quite literally by a collision model [190]. In this Chapter we will consider
a more general repeated interaction scheme that is not necessarily modeling an environment as
was considered in the case of collisional quantum thermometry in Ref. [143], where measurements
are performed on the auxiliary units after they have interacted with system itself in order to
learn something about that system, in this case, the temperature. Depending on the degree of
control over the auxiliary units and the system-auxiliary interaction this could look like a weak
measurement process [188] or a highly controllable interaction between the system and a number
of identically prepared auxiliary systems.

A diagram illustrating the usual setup for a collision model is seen in Fig. 3.4(a), the system
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repeatedly interacts with a stream of auxiliary units via a unitary interaction. The auxiliary units
may also interact with each other between collisions, this allows non-Markovianity to enter the
system dynamics [145] but for now we will consider only interactions between the system and the
auxiliary units. After the auxiliary unit has interacted with the system itself we can completely
forget about it because it no longer has any effect on the system dynamics. We start with an
uncorrelated system-bath state,

ρ0 = ρ0
S ⊗ ρA1 ⊗ ρA2 ⊗ · · · (3.78)

The unitary evolution of the entire system-bath

Ui = e−i(HS+HAi
+Vi) (3.79)

is described by the system Hamiltonian, HS , the auxiliary Hamiltonian, HAi and the interaction
Hamiltonian, Vi. It is usually assumed that the collision happens quickly and with sufficient
strength that we can ignore the system and auxiliary Hamiltonian during the collision. We define
the super-operator Ui(ρ) = UiρU

†
i , the system-bath state after N collisions can then be described

by,
ρN = UN (· · · (U2(U1(ρ0

S ⊗ ρA1) ⊗ ρA2) ⊗ · · · ⊗ ρAN
). (3.80)

We write it this way to highlight the fact that the evolution is a composition of maps and Ui acts
only on the system and the i-th auxiliary. Consequently, the state of the system after the i-th
collision is described by,

ρiS = E i(ρi−1
S ) (3.81)

where E i is a CPTP map defined as

E i(σ) = TrAi {Ui(σ ⊗ ρAi)} (3.82)

This tells us that the dynamics of the system after i collisions depends only on the state of the
system after i− 1 collisions and the map Ei. Therefore, the evolution of the system is Markovian
at the level of collisions. This fact is what makes collision models so powerful, because we only
need to keep track of the system and a handful of auxiliary units at any one time instead of the
entire system-bath state which will, in general, be some big, entangled mess after many collisions.
Even when we break the Markovianity by adding correlations or collisions between the auxiliary
units the number of auxiliary units we need to keep track of is usually very small [191]. We can
calculate the reduced state of each auxiliary in an equivalent manner,

ρ′Ai
= TrS

{
Ui(ρi−1

S ⊗ ρAi)
}
. (3.83)
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A state ρ∗ is said to be a steady state of the map E if it is a fixed point of the map i.e.

E(ρ∗) = ρ∗. (3.84)

Maps can in principle have more than one fixed point. Often a map will have the stronger
property that in the limit of a large number of collisions, every initial state will end up in a unique
steady state, this is known as a mixing channel [176]. For example, this could occur if we had a
thermalising interaction between the system and the bath then every initial state would end up
in the Gibbs state in the long time/large number of collisions limit. In the correct limits of small
collision times, it is possible to derive Lindblad master equations from collisional maps [145].

We can immediately see a similarity between the notation used to describe the system evolution
coupled to the environment in Eq. (3.6) and the system evolution of the collisional setup in
Eq. (3.82). This begs the question, is it possible to recreate the sequential measurement scheme
using collision models? In the Introduction chapter, 1, we showed in Eq. (1.14) that performing
a projective measurement on the environment is equivalent to performing a specific POVM on
the system itself. We also know that according to Neumark’s theorem [12], any POVM on the
system can be realised as a projective measurement on a separate Hilbert space. Therefore, a
collisional interaction followed by a projective measurement on the outgoing auxiliary unit can
implement any POVM we want on the system itself. This may be a useful practical technique for
employing complicated POVMs in a sequential measurement process. Using this we can recreate
the measurement part of the map, ΦΩi . For the second part of ΦΩi we can take a number of
approaches, we could imagine that the system is weakly coupled to a bath, resulting in a master
equation like we considered above. Another approach would be to model the system-environment
interaction using another collision model. In the remainder of this section, we will consider the
first approach and analyse how various kinds of collisional interactions relate to the sequential
measurement scheme.

3.6.2 Collisional Thermometry

Now we will apply this collisional metrology approach to the thermometry problem from Sec 3.5.
This kind of approach was first proposed in Refs. [143, 144]. The basic ingredients, shown in
in Fig. 3.4(b), consist of a (large) bosonic environment, E, with a flat spectral density at fixed
temperature T , that we wish to estimate. The environment is coupled to an intermediary system,
S, that undergoes the thermalising interaction described by Eq. (3.63). This intermediary system
is in turn coupled to a stream of independent and identically prepared auxiliary units, Ai, which
form the collisional bath. In what follows, we will assume both S and all Ai’s are qubits and that
the S-Ai interaction is unitary. Information about the temperature is then gained by performing
measurements on the Ai’s, either individually or in batches. This is in contrast to standard probe-
based thermometry, where the intermediary system is the one that is measured. We assume
that the S-Ai interaction time, τSA, is negligible compared to the system-environment coupling
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time, τSE allowing us to neglect the system-environment coupling during the collisions. After N
collisions the system and auxiliaries are given by the combined state

ρS,A1,...,AN
= USAN

◦ E ◦ USAN−1 ◦ ... ◦ E ◦ USA1(ρS ⊗ ρA1 ⊗ ...⊗ ρAN
) (3.85)

where USAi(◦)=USAi ◦U †SAi
and E corresponds to the map induced by Eq. (3.63) describing the

S-E interaction acting on the intermediary system in between the collisions.
We will consider the specific case of a qubit system with non-degenerate energy levels, the

energy spacing is still given by Ω. We choose the intermediary system and auxiliaries to be
resonant, i.e. HS =HA=ℏΩσz/2. The system, S, therefore experiences the stroboscopic map,

ρiS = E
(
trAi{USAi ◦ (ρi−1

S ⊗ ρAi)}
)

:= Φ(ρi−1
S ). (3.86)

For equally spaced collision times and a fixed initial state of the auxiliary units, this map has
a unique steady state ρ∗S = Φ(ρ∗S), which is not necessarily the Gibbs state, with the notable
exception of a pure dephasing interaction between S and Ai as outlined in the following section.

Dephasing Interactions

A number of different interactions have been employed for the collision models in this setup
including a partial swap type interaction [143] and a ZZ dephasing interaction [144]. We begin
by focusing on the ZZ interaction between the collisional bath and the system,

HZZ
SAi

= ℏg
2 σZS σ

Z
Ai
, (3.87)

which leads to a dephasing in the energy eigenbasis and is also referred to as an indirect mea-
surement interaction. We tune the effective system-environment coupling, γτSE , and the effective
S-Ai coupling, gτSA. Since Eq. (3.87) only affects the off-diagonal elements (i.e. coherences), and
assuming that S begins in thermal equilibrium with E before any interactions with the auxiliaries
occur, the reduced state of S will remain in the Gibbs state. We can also see this by calculating
the Kraus operators that are applied to ρS when a projective measurement is performed on the
auxiliary unit. The unitary generated by HZZ

SAi
is,

USAi =


e−igτSA/2 0 0 0

0 eigτSA/2 0 0
0 0 eigτSA/2 0
0 0 0 e−igτSA/2

 (3.88)

The Fisher information of this measurement is maximised when the initial state of the auxiliary
unit is perpendicular to the Z-axis, e.g. |+x⟩=(|0⟩ + |1⟩)/

√
2, and the measurement is performed
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in the basis,
|±g⟩ = 1√

2
(|0⟩ ± eigτSA/2 |1⟩). (3.89)

This leads to a maximum possible Fisher information without correlations of

F1 = 1 − cos(2gτSA)
2 F th, (3.90)

which is strictly smaller than the thermal Fisher information as we would expect. If the basis had
to be independent of gτSA then the best measurement basis would be |±y⟩ = (|0⟩ ± i |1⟩)/

√
2.

We can calculate the Kraus operators applied to the system in this basis

K± =
(
IS ⊗ ⟨±y|Ai

)
USA

(
IS ⊗ |+x⟩Ai

)
(3.91)

= cos
(
gτSA

2 ± π

4

)
|0⟩⟨0| + sin

(
gτSA

2 ± π

4

)
|1⟩⟨1|

This kind of POVM has been looked at in the context of a sequential measurement scheme [172,
173]. It can be shown that the Fisher information of such a sequential measurement protocol
can surpass the Fisher information of identically prepared probes, Fiid, when the measurement
performed on these probes is identical to the sequential measurement POVM [173]. It is still
not possible to beat the quantum Fisher information of the independently prepared probes, only
the Fisher information given by the same POVM used in sequential measurement scheme. This
POVM can also be prepared by using CNOT gates [192,193]. We can see that for the specific case
of gτSA = π

2 the Kraus operators just become the projectors onto the energy basis. Therefore,
this kind of collisional setup should provide exactly the same Fisher information as the sequential
measurement protocol used in Sec. 3.5. This can also be performed in the collisional setting by
making use of the CNOT gate,

USAi = CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.92)

with an initial auxiliary state of |0⟩ and measuring the auxiliary unit in the energy basis.
From now on we will maximise the Fisher information by setting gτSA = π/2. The resulting

Fisher information can be written in the form [144]

F |+x⟩
N = Fth + (N − 1)∆, with, (3.93)

∆ =
(1 + n̄)2

[
1 − eΓ(1 + 2n̄Γ)

]
(1 − eΓ)

(
1 − (1−eΓ)n̄

1+2n̄

) +
n̄2
[
−1 + eΓ(1 − 2(1 + n̄)Γ)

]
(1 − eΓ)

(
1 − (1−eΓ)(1+n̄)

1+2n̄

) (3.94)

where Γ=γ(2n̄+1)τSE is the effective thermalisation rate of the system and we have redefined N
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Figure 3.5: (a) Plot of the (log of the) ratio between ∆, Eq. (3.94), and Fth. Positive re-
gions indicate parameter regimes where a thermometric advantage is achievable via the collisional
scheme.(b) Mutual information between two adjacent auxiliary units after each has interacted with
the system via a ZZ interaction for a deterministic collisional thermometry protocol. (c) Measure
of the interdependence between γ and n̄ captured by Eq. (3.97) for a deterministic protocol with
N =2 (arbitrary choice). In all panels, the area captured by the dashed black line represents the
region in parameter space where the scheme achieves an advantage over the thermal QFI. The
white line corresponds to the value of n̄ where the QFI is maximal.

to be the number of collisions instead of the number of measurements, but in all of our examples
they are equivalent. This makes sense as it should be equivalent to the sequential projective
measurement protocol and therefore ∆ = F2|1. From Eq. (3.93) we find that the condition for
beating the thermal Cramér-Rao bound corresponds to ∆/Fth>1, shown in Fig. 3.5(a) [144]. We
see that we get a large peak in the Fisher information for certain values of γτSE that increases
with temperature. The location of this peak is highlighted by the solid white line and it is clear
that the location of the peak is temperature dependent. This could cause issues when attempting
to select the waiting time between collisions. The dashed black line encloses the area in which an
advantage of more than 1% can be gained from this setup. We can see that after sufficiently long
time the system has re-thermalised and therefore no significant advantage can be gained over the
thermal Fisher information. There is also a minimum temperature below which it is not possible
to gain any meaningful advantage over F th. Furthermore, the expression for ∆ demonstrates that
knowledge of the S-E coupling parameter, γτSE , is essential to achieve any boost in thermometric
performance. For the remainder of this section, we will assume a deterministic collisional scheme,
namely the system and the environment interaction time is identical between each of the collisional
events, i.e. γτSE is the same between each collision. Thus, we consider the same setting as
Refs. [143,144] of equally distributed collisions and in Sec. 3.6.3 we introduce stochasticity.

Role of correlations

Given that, for the ZZ interaction, measuring a single auxiliary cannot outperform the thermal
Cramér-Rao bound it is natural to ask what allows for the enhancement when multiple units are
measured. There are multiple ways to think about this question. We could explicitly consider the
state of the system when the SA interaction occurs, that state now has additional dependence on
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the temperature that comes in the form of the effective thermalisation rate, Γ. Another way is to
consider the correlations that are generated between successive auxiliary units. We can quantify
these correlations via the bipartite mutual information,

I = S(ρA) + S(ρB) − S(ρAB), (3.95)

where S(·) is the von Neumann entropy. This quantity captures all correlations, both quantum and
classical, present in the state. In Fig. 3.5(b) we show the mutual information shared between two
successive auxiliaries, i.e. ρAiAi+1 where it clearly appears that significant correlations are estab-
lished which depend on the time between each collision and the temperature of the environment.
The dashed black line indicates that while there appears to be a qualitative relationship between
the magnitude of the mutual information shared between the auxiliaries and the corresponding
thermometric performance, with some amount of mutual information clearly being necessary in
order to gain an advantage, remarkably too much correlation actually results in the QFI being
lower than the thermal Fisher information. The boundary is delineated by the white line which
tracks the peak QFI for each value of n̄. The value of the mutual information along the white
line is quite consistently around I ≈ 0.1, but does increase slowly with temperature. This poses
some interesting questions related to whether there is an optimal amount of correlation between
measurement results. We can further characterise the type of correlations present by determining
the quantum discord [194, 195] which captures the genuine quantum nature of the correlations
present, and in this case turns out to be identically zero. This implies that the correlations con-
tributing to the increased metrological performance are purely classical. This is initially confusing
given the fact that we are dealing with a dephasing interaction, but it can be explained by fact that
it can be mapped exactly onto a CNOT interaction and onto a sequential measurement protocol
in the energy basis.

Parameter Dependence

We see from Eq. (3.94) that the advantage gained from this collisional approach depends on the
effective thermal relaxation parameter Γ=γ(2n̄+ 1)τSE . Consequently, in order to maximise this
advantage, both γ and τSE must be known with certainty. While τSE corresponds to the time
between collisions, which can usually be known or measured with high accuracy, the parameter
γ which corresponds to the coupling strength between the system and the environment is more
delicate. In certain circumstances it may be that, prior to any measurements, γ is known for the
setup. However, when this is not the case, or if the bath is prone to some other disturbance,
determining it precisely is essential [196].

We can demonstrate the importance of knowing γ through the total variance of a measurement
in multi-parameter estimation by summing the variances of all parameters. When estimating m
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unknown parameters we get the following chain of inequalities [168]

m∑
a

var(xa) ≥ 1
m

Tr
{

F−1
}

≥
∑
a

1
mFaa

, (3.96)

where F is the QFI matrix as defined in Eq. (3.10). In our case m = 2 and xa ∈ {n̄, γ}. The
second inequality is only saturated when all the parameters are independent of each other and
therefore by comparing the ratio between the second and third terms, which we denote as

R = Tr
{
F−1}∑
a

1
Faa

, (3.97)

allows us to identify the areas in which knowledge of γ is necessary in order to estimate the
temperature. Figure 3.5(c) shows the peaks of this ratio line up perfectly with the peaks of
the QFI. Additionally, if one has no knowledge of γ it is impossible to gain any advantage over
the thermal Fisher information. In fact, the QFI is smaller than the thermal Fisher information
in this case when the time between collisions is small. It is clear from looking at the Fisher
information that any advantage of the thermal Fisher information had to come from the term,
Γ=γ(2n̄+ 1)τSE , in which γ and n̄ clearly depend on each other. This gives us some intuition as
to why maximising this interdependence corresponds to the maximum of the Fisher information.
What is not so clear is why this interdependence falls off again for very short collision times when
the system state has the most dependence on Γ. Understanding R better could help distinguish
between situations when correlations have a positive or negative effect on the Fisher information.

3.6.3 Stochastic Approach

The previous section outlined the basic ingredients of the collisional thermometry scheme for
the deterministic case introduced in Refs. [143, 144]. We now turn our attention to introducing
stochasticity at the level of the time between collisions, τSE , while keeping the average collision
time consistent with the previous section.

In nature, interactions will not generally occur in fixed intervals or at deterministic times.
Rather, processes are typically random with the time between interactions captured by a suit-
able probability distribution, the waiting time distribution (WTD). Within the framework of open
quantum systems, collision models allow us to introduce such randomness either in the intervals
between successive collisions or in the collision time itself and are referred to as stochastic collision
models [197–199]. We will focus on randomness in the intervals between collisions.

Collision models, in their usual form, are useful tools for modelling system dynamics but
often seem artificial. Employing WTDs in this sense clearly brings collision models closer to
modelling real physical systems [200–202], where there is randomness involved. Here we look
at how introducing such randomness affects the Fisher information obtained from the collisional
thermometry scheme. As we shall demonstrate, stochastic collision models allow us to achieve
a greater parameter range of advantage over deterministic collision models without significantly
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Figure 3.6: Comparison of the ratio between ∆ and ∆ for a Weibull distribution with k=1, and
a deterministic equally spaced waiting time distribution. The green plane represents the crossing
point where one term becomes larger than the other. γτSE is the average time between collisions.

sacrificing the maximal achievable precision. For concreteness, we shall focus on the Weibull
renewal distribution, but our results remain qualitatively unaffected for other families of WTD,
e.g. Erlang distributions. The Weibull renewal distribution can be expressed as

p(t) = k

λ

(
t

λ

)k−1
e−(t/λ)k

, (3.98)

where λ is the average time between collisions and k determines the shape of the distribution.
Some examples of such distributions can be seen in the inset of Fig. 3.7. In particular, large k
tends to produce regular intervals between collisions with small, Gaussian like deviations from the
mean and, in the limit k→ ∞, the collisions are deterministic and equally spaced as considered
in Refs. [143,144] and previous sections. Whereas, small k is characterised by bursts of collisions
followed by long breaks [199]. For k = 1, the WTD corresponds to the exponential distribution
characterising a Poisson point process.

As we see from Eq. (3.93) and Fig 3.5, when the waiting time between subsequent collisions is
deterministic and constant, it is possible to obtain a QFI that is orders of magnitude higher than
the thermal Fisher information for specific values of the coupling parameters and temperature [143,
144]. However, a drawback of this is that such high precision is restricted to a narrow parameter
range, delicately dependent on the temperature of the environment. Such a situation is clearly
not ideal given that the temperature is the very quantity which we wish to estimate [143, 144].
This is a well-known issue in metrology, specifically in local estimation schemes making use of
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the Fisher information. Approaches to address this issue include introducing global estimation
schemes [54,203–206] and biased estimators [146]. Here, we demonstrate that if the interactions
are random, governed by a particular WTD, this randomness will affect the Fisher information
obtainable from the measurements even when the average collision time is still the same. It is
straightforward to extend our proof of Eq. (3.33) to account for random waiting time distributions
under certain conditions. It is important that the steady state equation does not depend on the
waiting time. If this were not the case, the Fisher information of each measurement would once
again depend on the results of all previous measurements. For the ZZ interaction, the reduced
state of the system still satisfies the steady state equation (3.65). This means that we can still
write the Fisher information in the form,

F |+x⟩
N = F th +

N−1∑
i=1

∆i, (3.99)

where ∆i takes an identical form as given in Eq. (3.94) except with τSE now replaced with a
variable time τ iSE which is randomly determined from the waiting time distribution. To determine
the average performance of a particular WTD, p(t), we now average over each collision time,

F
|+x⟩
N =

∫ ∞
0

· · ·
∫ ∞

0

N−1∏
i=1

dτ iSE p(τ iSE) F |+x⟩
N = F th + (N − 1)∆, (3.100)

where ∆ =
∫∞

0 dτSE p(τSE) ∆ with the WTD, p(t) being any positive function that satisfies∫∞
0 dt p(t)=1. In Fig. 3.6 we show the (log of the) ratio between ∆ for an exponential distribution,

i.e. k=1 (arbitrary choice) and the deterministic ∆. We can see that the randomness allows for
a significant performance boost (up to ten times larger) over a wide range of parameters at the
cost of a slight sensitivity loss when the deterministic QFI is maximal.

While we have established that an advantage over the regularly spaced collisions can be
achieved for a particular choice of WTD, we now turn our attention to how the particular form of
the distribution affects the performance. As mentioned previously, varying k in the Weibull dis-
tribution, Eq. (3.98), interpolates between distributions with regularly space collisions for k→∞
to collisions in batches followed by long pauses as k→0. We compare the QFI for various values
of k at a fixed (arbitrarily chosen) value of temperature, corresponding to n̄=2, in Fig. 3.7. For
larger values of k, we find the behaviour tends to the deterministic case which is characterised by
a QFI with a large peak that is narrow in the parameter range. However, for smaller values of k,
leading to a more random sequence of collisions, we find the range over which an advantage can be
demonstrated is significantly broadened, albeit at the expense of reducing the “maximum” achiev-
able precision. Thus, by introducing stochasticity to the process we are able to alleviate the need
for precise knowledge of the optimal system-environment coupling. Interestingly there is a limit to
how small k can be and still retain an advantage, with very small k leading to collisions happening
so close together that no additional information can be gained. This can be related back to the
fact that when the time between collisions is very small, the correlations between measurements
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Figure 3.7: Comparison of the value of the quantum Fisher information for various Weibull dis-
tributions of the collision time interval (see Eq. (3.98)), with the deterministic case, for n̄= 2.
Similar behaviour is seen for other values of temperature above n̄= 1.5. Inset: Distributions for
various values of k shown in the main panel.

are so large that very little additional information is gained from subsequent measurements.

3.6.4 Optimal Measurements

While the QFI places an asymptotic bound on the accuracy of parameter estimation it does not
provide details on precisely what POVM should be implemented in order to saturate the bound.
Therefore, identifying the measurements that must be performed on the auxiliary units is important
for assessing the implementability of the scheme, something which is particularly relevant for
our stochastic collisional approach, in order to assess whether optimal measurements depend on
the waiting time between collisions. To find the optimal measurement we need the symmetric
logarithmic derivative (SLD) operator La for parameter xa. In terms of the eigen-decomposition
of ρ=

∑
i λi |λi⟩⟨λi|, the SLD operator is [168],

⟨λi|La |λj⟩ = δij
∂aλi
λi

+ 2(λj − λi)
λi + λj

⟨λi| ∂aλj⟩.
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For our scheme we find that the eigenvectors {|li⟩} of La are independent of xa and the Fisher
information is

Faa =
∑
i

⟨li| ∂aρ |li⟩2

⟨li| ρ |li⟩
=
∑
i

⟨li| ρLa + Laρ |li⟩2

⟨li| ρ |li⟩

= Tr
{
ρL2

a

}
= Faa

where Faa is the quantum Fisher information for parameter xa. This implies that the optimal
measurement corresponds to one performed over the {|li⟩} basis. For the ZZ interaction consid-
ered with gτSA = π/2, the eigenvectors |λi⟩ of ρ are independent of T and γ meaning that the
optimal measurement is precisely the measurement in the {|λi⟩} basis and is the same for both
T and γ. One advantage that the collisional setup has over the sequential measurement protocol
is that the measurement on the auxiliary units does not have to be performed immediately after
interacting with the system. We can wait for a large number of collisions to occur and then
perform a measurement on many auxiliary units at the same time. This would allow us to make
use of entanglement generated between the systems. In the thermometry case we considered,
there are no quantum correlations between the auxiliary units and therefore, the optimal measure-
ment can be done using single-qubit measurements. For the auxiliary units initialised in the |x+⟩
state considered here, there is some ambiguity in the measurement basis due to degeneracy in
the eigenvalues. However, the simplest basis is |±y⟩1 . . . |±y⟩1M for M collisions. The optimal
measurements involve only product states and therefore can be performed using only single-qubit
projective measurements.

3.6.5 Partial Swap Interactions

We conclude our analysis by considering an alternative form of the S-Ai interaction that has
been considered frequently in collisional thermometry [143, 144,146]. This is a partial swap (also
referred to as an exchange) style interaction given by

HSwap
SA = ℏg(σ+

S σ
−
A + σ−S σ

+
A). (3.101)

where similarly to the previous case we can tune the effective couplings, γτSE and gτSA. This
results in the unitary,

USwap
SAi

=


1 0 0 0
0 cos(gτSAi) −i sin(gτSAi) 0
0 −i sin(gτSAi) cos(gτSAi) 0
0 0 0 1

 . (3.102)

The Fisher information is maximised by choosing the initial state of the auxiliary units to be the
energy ground state and measuring in the energy basis [144]. This results in the following POVM
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being applied to the probe itself,

K0 =
(
IS ⊗ ⟨0|Ai

)
USwap
SAi

(
IS ⊗ |0⟩Ai

)
(3.103)

= |0⟩⟨0| + cos (gτSA) |1⟩⟨1| ,

K1 =
(
IS ⊗ ⟨1|Ai

)
USwap
SAi

(
IS ⊗ |0⟩Ai

)
(3.104)

= sin (gτSA) |0⟩⟨1| .

We can see that this becomes a full swap when gτSA = π/2. One interesting consequence of this
kind of POVM (in the full swap limit) is that the state of the probe system after the interaction is
independent of the temperature. Therefore, the sequential measurement scheme has Markov order
1, even though the POVM is not a projective measurement. In fact, this specific POVM gives us
the Fisher information in the form of Eq. (3.93) with ∆ = F2|1=e0 . This explains why it is possible
to obtain slightly higher precision with this kind of interaction over the ZZ interaction [143]
because the ground state is the optimal initial state for an iid scheme [173]. In contrast to the
ZZ interaction, now the system and auxiliaries will exchange energy as well as coherences and
thus the system will not remain in the Gibbs state throughout the dynamics. The steady state of
the map Φ can be calculated as

ρSS = 1 + n̄+ e−Γn̄

1 + 2n̄ |0⟩⟨0| + n̄− e−Γn̄

1 + 2n̄ |0⟩⟨0| . (3.105)

We see that this interaction does not preserve the thermal steady state, instead we get additional
temperature dependence entering the state through the effective thermalisation rate Γ. This
interaction is significantly more disruptive to the thermal bath itself because the probe remains
in a non-equilibrium state. This may cause some issues if the bath was sufficiently small, the
temperature was very low, or a large number of measurements are performed. While clearly
there are some differences due to the change in interaction, we find that introducing different
waiting time distributions has a qualitatively identical effect in this case, i.e. the introduction of
stochasticity allows to significantly extend the range over which a thermometric advantage can be
gained from the collisional thermometry scheme.

3.7 Conclusions

Correlations in the Fisher information are a double-edged sword. They can lead to large increases
in the precision of measurements while also dramatically increasing the complexity of estimating
the unknown parameter. The sequential projective measurement scheme provides a powerful
and practical metrology method that can achieve higher precision than many of the traditional
metrology strategies, while still being simple to implement and calculate. The Fisher information
takes on a simple form but still leaves plenty of room for optimisation. We showed that this
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scheme is equivalent to averaging over the Fisher information of individual, iid probes, initialised
in the measurement basis states. We were also able to show that when the unitary that governs
the system-environment evolution is independent of the parameter to be estimated, the Fisher
information obtainable from the system is bounded above by the Fisher information of a coarse-
grained measurement on the environment. More precisely, this applies when the Kraus operators
of the map E ′(ρE) are independent of the unknown parameter. We also demonstrated that any
sequential measurement protocol can be simulated using a collision model setup. This collisional
setup has some additional benefits of allowing for entanglement between the auxiliary units and
even correlations between the auxiliary units before interacting with the probe [144].

In the case of thermometry, we found that for specific waiting times between measurements
it was possible to obtain a large advantage over the thermal Fisher information. We showed that
allowing for different waiting times between measurements based on the result of the previous
measurement resulted in an increase in the average Fisher information of each measurement.
This increase tended to get larger as the dimension of the probe increased. We also saw that
larger probes tended to give higher precision, even when that property was not reflected in the
thermal Fisher information. Although large advantages were possible, we ran into the common
issue that gaining maximum advantage requires a priori knowledge of the unknown parameter.
Introducing stochasticity in the waiting time between measurements allows us to blunt this problem
by achieving significant advantage over the Fisher information over a larger range of temperatures.

There is plenty of room to build on the framework and results from this Chapter. Some avenues
of further research include using different kinds of POVMs instead of projective measurements such
as weak measurements or any POVM with finite Markov order. It would also be interesting to
look at system environment interactions beyond the weak coupling limit, possibly with the use of
non-Markovian collision models in order to see what effect this can have on the Fisher information.
As we discussed in Sec. 3.4 it is not always easy to know what uncorrelated process to compare our
correlated process to, let alone identifying the conditions under which those correlations provide
an advantage over said uncorrelated process. Nevertheless, we were able to prove that additional
information about the unknown parameter must be present in the system-environment interaction
in order for the Fisher information of the sequential measurement scheme to perform better than
any coarse-grained measurement of the environment. Additionally, this coarse-grained environ-
ment measurement coincides with other notions of the uncorrelated Fisher information, such as
F1, in the case of thermometry. All this does is rule out certain cases where it is not possible
for the correlations to lead to a larger Fisher information without helping us identify what kinds
of correlations lead to advantages. It can be shown that when using estimators based on the
sample mean that the Fisher information of the sample mean is larger when individual measure-
ments are negatively correlated [175]. We can understand this intuitively because fluctuations in
the individual measurements will tend to cancel out when they are negatively correlated [175].
This analysis does not hold for our thermometry example because our measurement results are
positively correlated. Another approach that could be taken would be to ignore the concept of
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correlations and focus on the Fisher information of specific measurement results, i.e. specific
initial states, and attempting to identify when and why we see Fisher information increases in
these scenarios. Further inquiry is warranted into the nature of the correlations and how these
relate to the multiparameter dependence that we looked at in Sec. 3.6.2. In the collisional setup it
would be interesting to investigate whether generating entanglement between the auxiliary units
would allow for Heisenberg scaling to apply in addition to the advantages that are gained from
correlations [207].
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Chapter 4

Entropy of the Quantum Work
Distribution

When it comes to manipulating quantum states, there is no such thing as a free lunch. Even a
unitary evolution can have associated costs when control is involved [113]. One area in which
these costs appear is in thermodynamic quantities. In this Chapter we will focus on the notion of
thermodynamic work, which is a tricky concept to define for quantum systems. Just as discussed
in Chapter 2 where we found that it is not possible to define a time operator in quantum mechanics
the same can be true for the thermodynamic work. In fact, for work the problem is even more
pronounced, this is because it is not a property of a quantum state but of a process. This is
obvious from the point of view of classical thermodynamics because work does not have an exact
differential and therefore, is not a state variable [208]. One clear difference that the quantum
scenario possesses is the presence of coherence. We will analyse the effect that this coherence
has on the work for both pure states and Gibbs equilibrium states, Eq. (3.53). We discover that
there are important contributions to the work from both the classical and quantum components
and establish that the work probability distribution is a useful tool, encoding information about
both the micoscopic properties of the system, e.g. its critical nature for many-body system, and
relevant information about the dynamics the system is undergoing. Section 4.1 introduces the
relevant concepts from the existing literature. The remainder of the Chapter is adapted from
Ref. [3] which is a collaboration between with several authors, with the bulk of the theoretical
and computational work performed by myself and Anthony Kiely. Secs. 4.4.1, 4.4.2 and 4.4.4
represent additional original work done by me after the publication of the original paper.

4.1 Introduction

Since work is property of a process, it makes sense to make two different measurements of the
system, one at the start, and one at the end of the process. This definition of the work is
known as the two-point measurement (TPM) approach [209] because it involves performing energy
basis measurements at the start and end of the process [210, 211]. The TPM approach has
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proved to be fruitful for developing connections between thermodynamics and other areas of
quantum physics including, out-of-time-order correlators [212], information scrambling [213, 214]
and Kibble-Zurek scaling [215, 216]. The main drawback of the TPM approach is that the initial
measurement destroys any coherence that the initial state had. Coherence can play a significant
role in the thermodynamics of quantum systems [217–220]. In particular, it is possible to use
quantum coherence to extract useful work from a system [221] and, therefore, there must be a
thermodynamic cost associated with their creation [222,223]. Although the coherence is destroyed
in the first measurement, coherence can still be generated between the two measurements. A
potential downside of generating a lot of coherence in non-equilibrium systems is that it can lead
to large fluctuations [224].

When a measurement is performed in quantum mechanics the results are not deterministic,
therefore, the work done in any single iteration of the TPM scheme is also not deterministic. This
means that there is a probability distribution associated with each of the measurements and with
the work done itself. In the TPM approach, we start with our system prepared in an arbitrary
initial state, ρ, and perform a measurement in the energy basis of the initial system Hamiltonian,
Hi =

∑
nE

i
n |ni⟩⟨ni|. The system Hamiltonian is then varied over time until it reaches the final

Hamiltonian Hf =
∑
mE

f
m |mf ⟩⟨mf |. Another measurement is then performed in energy basis of

Hf . The evolution of the system during this process is described by a unitary evolution, which
changes the state to ρ′ = UρU †. The probability of the first measurement being the state |ni⟩
is given by pn = ⟨ni| ρ |ni⟩. Since the initial measurement changes the state of the system, the
probability distribution of the second measurement depends on the result of the first measurement,
in analogy with the sequential measurement scheme in Chapter 3. We can therefore define the
probability of measuring the state |mf ⟩ in the second measurement as pm|n= |⟨mf |U |ni⟩|2, which
can also be thought of as the transition probability. The work of a single iteration of the TPM
protocol is just the difference in the energy eigenvalues of the two measurements, Efm − Ein, this
is also known as the Bohr (transition) frequency between the initial and final energy level. The
probability that a certain amount of work, W , is injected or extracted can then be calculated by
grouping together all the measurement outcomes with the same amount of work,

P (W ) =
∑
n,m

pnpm|nδW,Ef
m−Ei

n
. (4.1)

We assume these form a discrete (possibly infinite) set.
The work distribution can be incredibly complicated and therefore it is often useful to focus

on summary statistics such as the moments of the work distribution, ⟨Wn⟩=
∑
W WnP (W ), and

their cumulants. This is particularly useful when the work distribution is Gaussian [225] but for
more complicated distributions the first few cumulants might not be enough to capture all the
interesting features of the full distribution [225,226]. We aim to tackle some of these shortcomings
by looking at a different summary statistic of the work distribution, namely the entropy of the
distribution. The entropy of a distribution can be thought of as a measure of its complexity. We
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derive a general and saturable bound on HW , that consists of two distinct contributions: one is
the entropy of the initial measurement in the TPM protocol and is therefore a property of the
initial state and initial Hamiltonian only, in suitable limits, this corresponds simply to the Gibbs
equilibrium entropy; and a second term which is purely quantum in nature, related to the coherence
established between the initial and final Hamiltonian bases by the driving protocol, and given by
the relative entropy of coherence.

The chapter is organised as follows. First we detail how thermodynamics can be generalised to
include features of quantum systems, in particular coherence. Secondly, we introduce the entropy
of the work distribution and derive a number of upper and lower bounds that shed some light
on its structure. Next, we illustrate the utility of our results in the Landau-Zener model which
reveals that the entropy of the work distribution clearly highlights the avoided crossing, whereas
the moments show little to no evidence of this feature. We then conduct a detailed analysis of
work fluctuations in the Aubry-André-Harper (AAH) model, a paradigmatic model for studying
localization. We show that HW is related to a modified inverse participation ratio and provides a
remarkably sensitive indicator of the localization transition.

4.1.1 Quantum Coherence

Although it is a fundamental part of what distinguishes quantum systems from classical systems,
it can be hard to pin down exactly what coherence is in a quantum system. The coherence must
be defined relative to a specific basis which we will denote {|i⟩}. Then, there is the problem of
quantifying the coherence of a quantum system for which many different approaches exist [227].
We will focus on one family of approaches, distance-based quantifiers of coherence. A distance-
based coherence quantifier can be defined as [228]

CD(ρ) = inf
σ∈I

D(ρ, σ), (4.2)

where I is the set of incoherent states, i.e. the states of the form σ =
∑
i pi |i⟩⟨i|. Immediately

we can see a problem in that there are infinitely many ways to define a distance measure between
quantum states and each of these can give a different measure of coherence. Nevertheless, different
quantifiers of coherence can be useful in different contexts. We will focus of a specific distance-
based coherence measure known as the relative entropy of coherence (REC) [228]. This can be
obtained by choosing the quantum relative entropy or quantum Kullback-Leibler divergence,

S(ρ∥σ) = −S(ρ) − Tr [ρ ln σ] , (4.3)
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as our distance measure, where S(ρ) = Tr [ρ ln ρ] is the Von-Neumann entropy. If we analyse the
second term in this equation we see that

Tr
[
ρ
∑
i

ln pi |i⟩⟨i|
]

=
∑
i

⟨i| ρ |i⟩ ln pi (4.4)

= Tr

∑
j

⟨j| ρ |j⟩ |j⟩⟨j|
∑
i

ln pi |i⟩⟨i|


= Tr [D(ρ) ln σ]

where D(ρ)=
∑
i ⟨i| ρ |i⟩ |i⟩⟨i| is the full dephasing operation in the coherence basis. This means

that we can rewrite the relative entropy as

S(ρ∥σ) = −S(ρ) + S(D(ρ)∥σ) + S(D(ρ)). (4.5)

This is clearly minimised when σ = D(ρ) giving us a closed form for the REC [228]

Cr(ρ) = S(D(ρ)) − S(ρ). (4.6)

It can be shown that the REC corresponds to the distillable coherence for incoherent opera-
tions [229]. The distillable coherence is the maximum rate at which maximally coherent two-qubit
states, |ψ⟩2 = 1

2
∑1
i,j=0 |i⟩⟨j|, can be generated from ρ using incoherent operations. So explicitly,

n copies of ρ can generate, at most, nCr(ρ) copies of |ψ⟩2 via incoherent operations when the
REC is measured in units of bits, i.e. the logarithm is taken to base 2.

4.1.2 Thermodynamics of Gibbs equilibrium states

One scenario where the work is much easier to define in quantum systems is when the system is
initially in a Gibbs equilibrium state. This can occur when our system is coupled to a heat reservoir
at inverse temperature β in the weak coupling limit. It is easier to make comparisons to classical
thermodynamics in this limit because our initial state has no coherence in the basis of the initial
Hamiltonian and therefore the initial measurement has no effect, on average, on thermodynamic
quantities. We allow the system Hamiltonian H(λ) to be controlled by an external work parameter,
λ. Therefore, the initial state of our system is

ρβ(λ0) = e−βH(λ0)

Z(λ0) , (4.7)

where Z(λ) = Tr
[
e−βH(λ)

]
[220]. The external work parameter is ramped from λ0 → λτ , this

causes the system to evolve under the unitary dynamics,

U(0, τ) = T← exp
[
−i
∫ τ

0
dsH(λt)

]
(4.8)
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A measurement is then performed at time τ in the energy basis of the Hamiltonian,

H(λτ )=
∑
m

Efm(λτ ) |mf ⟩⟨mf | . (4.9)

This gives us a work distribution as defined in Eq. (4.1). The average work, ⟨W ⟩, of such a process
can is just the difference in the average energy of the system at the start and end of the process,
i.e.

⟨W ⟩ = Tr [H(λτ )ρτ ] − Tr [H(λ0)ρβ(λ0)] . (4.10)

The final state of the system before measurement is ρτ = U(0, τ)ρβ(λ0)U(0, τ)†, which is not
equal to the Gibbs state ρβ(λτ ) because, in general, it is not possible to transform one Gibbs state
to another via unitary evolution. As we will prove below, the process that minimises the entropy
is the quasi-static, isothermal process where the work done is just the change in free energy,

∆F = 1
β

(ln Z(λ0) − ln Z(λτ )) . (4.11)

This means that we can define the irreversible work and subsequently the irreversible entropy
change by subtracting the actual average work from the free energy,

⟨Sirr⟩ = β⟨Wirr⟩ = β(⟨W ⟩ − ∆F ). (4.12)

In order to prove that β∆F is the minimum entropy production we must derive a quantum version
of the Jarzynski equality [230] for the TPM scheme. For an initial Gibbs state, we have pn = e−βEi

n

Z(λ0)
so we can write the average exponential work as〈

e−βW
〉

=
∑
W

P (W )e−βW (4.13)

=
∑
n,m

pnpm|nδW,Ef
m−Ei

n
e−βW

=
∑
n,m

e−βE
i
n

Z(λ0) |⟨mf |U |ni⟩|2e−β(Ef
m−Ei

n)

= 1
Z(λ0)

∑
n

⟨ni|U †
(∑

m

e−βE
f
m |mf ⟩⟨mf |

)
U |ni⟩

= Z(λτ )
Z(λ0) Tr

(
U †ρβ(λτ )U

)
= Z(λτ )

Z(λ0) = e−β∆F .

This tells us that the definition of the work based on the TPM scheme provides a quantum
equivalent of the Jarzynski equality of the exact same form. Rearranging this we get, ⟨e−Sirr ⟩ = 1,
then we can apply Jensen’s inequality we get, ⟨Sirr⟩ ≥ 0, thus proving that β∆F is the minimum
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possible entropy production. Another way to prove this is to look directly at ⟨Sirr⟩,

⟨Sirr⟩ = β(⟨W ⟩ − ∆F ) (4.14)
= β (Tr [H(λτ )ρτ ] − Tr [H(λ0)ρβ(λ0)]) − (ln Z(λ0) + ln Z(λτ )

= − Tr
[
ln
(
e−βH(λτ )

Z(λτ )

)
ρτ

]
+ Tr

[
ln
(
e−βH(λ0)

Z(λ0)

)
ρβ(λ0)

]
= − Tr [ρτ ln ρβ(λτ )] − S(ρβ(λ0))

= S(ρτ∥ρβ(λτ )).

This result holds when the system evolution is unitary, when we have a more general evolution
described by a master equation, calculating the excess entropy production is much trickier as we
discussed at the end of Chapter 2. We showed in Eq. (2.110) that the minimum excess entropy
production for a series of sudden quenches can be calculated using action quantum speed limits.

Another important quantity is the characteristic function of the work,

G(u) =
∫
dWeiuWP (W ) = Tr

[
U †eiuH(λτ )Ue−iuH(λ0)ρ̄

]
(4.15)

where ρ̄=
∑
n ⟨ni| ρ |ni⟩ |ni⟩⟨ni| is the initial state, dephased in the basis of Hi. The characteristic

function can be used to derive many important quantities and relations. For example, we can
see that G(iβ) =

∫
dWe−βWP (W ) =

〈
e−βW

〉
. Talkner and Hänggi [231] use the characteristic

function to derive a quantum version of the Crooks relation [232],

PF(W )
PB(−W ) = e−β(W−∆F ). (4.16)

PF(W ) is just the work distribution in Eq. (4.1) with an initial thermal state ρβ(λ0) ramped
from H(λ0) to H(λτ ), then the reverse process that gives PB(W ) is just an initial state ρβ(λτ )
undergoing the time-reversed ramp from H(λτ ) to H(λ0). The quantum Crooks relation implies
that a quantum TPM process is exponentially more likely to lead to a positive ⟨Sirr⟩. This sheds
some light on how we obtain a thermodynamic arrow of time from an underlying time-reversible
unitary evolution combined with the TPM protocol. The Jarzynski equality can be derived from
the Crooks relation by rearranging and integrating over W . If instead, we take the log of both
sides of Eq. (4.16) first and integrate over PF(W ) we get [233],

⟨Sirr⟩ = β(⟨W ⟩ − ∆F ) =
∫
dWPF(W )(logPF(W ) − logPB(−W )) (4.17)

= K(PF(W )∥PB(−W )),

where K(P∥Q) is the classical Kullback–Leibler divergence. Comparing this to Eq. (4.14) we get
an interesting relation between a classical and a quantum Kullback–Leibler divergence,

K(PF(W )∥PB(−W )) = S(ρτ∥ρβ(λτ )). (4.18)
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By definition, the characteristic function is the generating function of the work distribution
P (W ). Therefore, we can expand G(u) around u = 0 to get,

G(u) =
∞∑
n

(iu)n

n! ⟨Wn⟩ , (4.19)

this means that the nth statistical moment can be calculated as

⟨Wn⟩ = (−i)n∂nuG(u)|u=0. (4.20)

The cumulants Kn can also be defined by expanding logG(u) in the same manner [234],

Cn = (−i)n∂nu logG(u)|u=0. (4.21)

Combining the fact that G(iβ) =
〈
e−βW

〉
with the Jarzynski equality we get

logG(iβ) = −β∆F = ⟨Sirr⟩ − β⟨W ⟩. (4.22)

Then since C1 = ⟨W ⟩ we can write the irreversible entropy production solely in terms of the
cumulants

⟨Sirr⟩ =
∞∑
n=2

(−1)nβ
n

n! Cn. (4.23)

This is particularly useful when the work distribution is a Gaussian, reducing the irreversible entropy
production to ⟨Sirr⟩ = β2 Var(W )/2.

4.1.3 Sudden Quench

A sudden quench is a protocol where the ramp from λ0 → λτ occurs in a very short time,
such that the unitary, U(0, τ), can be approximated by the identity. This kind of quench is
realisable experimentally in ultra cold atom experiments. Theoretically, sudden quenches have been
particularly useful in the study of phase transitions through a quantum critical point [235–238].

It is worth digging more deeply into the idea of a sudden quench in order to identify just how
fast the quench needs to be for the assumption of U(0, τ) = I to hold and why it is useful to use this
approximation. As we know from classical thermodynamics, the final state of our system depends
not just on the total time of the ramp from λ0 → λτ , but also on how the ramp is performed,
i.e. it can depend on the value of λt at intermediate times. This is part of the motivation that
we had in Chapter 2 to derive a quantum speed limit that depends on the instantaneous speed of
the system evolution rather than just the average speed. There are infinitely many ways to ramp
the system from λ0 → λτ and each of these can give different work distributions, therefore it is
difficult to make any general claims about the work distribution without specifying the exact ramp
protocol.

For the sudden quench we will assume that at time t ≤ 0, the Hamiltonian of the system is
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given by Hi =
∑
nE

i
n |ni⟩⟨ni|, and at time t ≥ τ , the Hamiltonian is Hf =

∑
mE

f
m |mf ⟩⟨mf |.

Then for times 0 ≤ t ≤ τ , it is useful to write the Hamiltonian in the form,

H(t) = Hf + V (t). (4.24)

If we assume an initial pure state, then we can decompose the time dependent state in the final
Hamiltonian basis,

|ψt⟩ =
∑
m

cm(t) |mf ⟩ (4.25)

By applying the Schrödinger equation we can get a differential equation for the time evolution of
cm(t),

iℏ
d

dt
cn(t) =

∑
m

⟨nf |V (t) |mf ⟩ e−i(E
f
m−Ef

n)tcm(t). (4.26)

Then we can integrate this expression to get an explicit formula for the time dependent coefficients,

cn(t) = cn(0) − i

ℏ
∑
m

∫ t

0
⟨nf |V (t′) |mf ⟩ e−i(E

f
m−Ef

n)t′cm(t′)dt′. (4.27)

Now we want to consider the scenario where the quench is fast enough so that we can perturbatively
expand cn(t). This means that we need ⟨nf |V (t) |mf ⟩ ≪ 1 for all n,m. We will also assume that
(Efm − Efn)t′ ≪ 1 so that we can approximate the exponential as 1. To first order we get [234]
cn(t) ≈ cn(0) + c

(1)
n (t) with

c(1)
n (t) = − i

ℏ
∑
m

∫ t

0
⟨nf |V (t′) |mf ⟩ cm(0)dt′. (4.28)

If our sudden quench assumption is to hold true then we expect that the change in the system
state to be negligible, i.e. |c(1)

n (t)|2 ≪ 1 for all n. If we assume that the initial state of our system
is an eigenstate of initial Hamiltonian, which is always the case in the TPM protocol, we can
decompose it in the final basis as |ki⟩ =

∑
m cm(0) |mf ⟩ and we get the following condition [234]

|c(1)
n (t)|2 = 1

ℏ2

∣∣∣∣∫ t

0
⟨nf |V (t′) |ki⟩

∣∣∣∣2 ≪ 1. (4.29)

This term still depends on the specific quench but as we will see later, under some reasonable
assumptions we can determine how fast the quench needs to be.

When it is not possible perform the quench fast enough for the sudden quench approximation
to be valid, it may be possible to calculate the entropy of the work distribution by applying a
control Hamiltonian, Hc(t), to the system. The system Hamiltonian would be kept fixed leading
to the unitary

U(τ) = T← exp
[
− i

ℏ

∫ τ

0
dt (Hi + Hc(t))

]
. (4.30)

If we could choose Hc(t) such that U(τ) is the unitary that transforms the eigenbasis of Hi to
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that of Hf then the transition frequency between eigenstates would be identical to that of the
sudden quench, allowing us to recreate Hu.

4.2 Entropy of the Work Distribution

In the previous section we defined the work distribution, P (W ), in Eq. (4.1). Using this definition,
we can simply define the entropy of the work distribution as,

HW = −
∑
W

P (W ) lnP (W ), (4.31)

which characterizes the complexity of P (W ). It is zero when the work is deterministic, and can
range up to lnN2 when P (W ) is uniform and all the Bohr frequencies are non-degenerate.

HW is in general different from

Hu = −
∑
n,m

pnpm|n ln pnpm|n, (4.32)

which is the entropy of the distribution pnpm|n when we do not collect probabilities that have
equal values of work. We can define these sets of equal work as, ΓW = {(n,m) : Efm−Ein = W},
and we can rewrite Eqs. (4.31) and (4.32) as

HW = −
∑
W

∑
(n,m)∈ΓW

pnpm|n lnP (W ), (4.33)

Hu = −
∑
W

∑
(n,m)∈ΓW

pnpm|n ln pnpm|n. (4.34)

Their difference is then given by,

Hu −HW = −
∑
W

∑
(n,m)∈ΓW

pnpm|n ln
(
pnpm|n
P (W )

)
≥ 0, (4.35)

where the inequality follows from the fact that pnpm|n
P (W ) ≤ 1 for any (n,m) ∈ ΓW . This immediately

tells us that Hu ≥ HW .
To provide a lower bound on HW , we can also use Eq. (4.35). The entropy of each ΓW on

the right-hand side is maximal when all pnpm|n in ΓW are equal. So, if there are |ΓW | elements
in ΓW , we get

−
∑

(n,m)∈ΓW

pnpm|n ln
(
pnpm|n
P (W )

)
≤ −

∑
(n,m)∈ΓW

pnpm|n ln
( 1

|ΓW |

)
= P (W ) ln |ΓW |.

Hence
Hu −HW ≤

∑
W

P (W ) ln |ΓW | ≤ ln γmax. (4.36)
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Where γmax is the size of the largest set ΓW or equivalently can be thought of as the maximal
degeneracy of the Bohr frequencies (γmax ≥ gigf , where gi(f) are the degeneracies of Hi(f)). Now
we can finally bound HW above and below by

Hu − ln γmax ≤ HW ≤ Hu, (4.37)

with equality if the values of work are all non-degenerate.
Hu is a much easier quantity to work with compared to HW because, as we can see from

Eq. (4.1), the properties of HW can depend very sensitively on the specific structure of the initial
and final Hamiltonians and their relation to each other. Although, as we will see, in practice, their
behaviour is very closely related. Hu can be interpreted more straightforwardly, as we will see
below.

We will now show that Hu can be split up into two contributions, the first is related to the
entropy of the diagonal ensemble of the initial state, i.e. the initial state projected onto the basis of
the initial Hamiltonian. Therefore, this is the contribution that comes from the first measurement
in the TPM protocol. The second contribution is related to the transition frequencies between
different states of the initial and final Hamiltonians and directly quantifies the degree of quantum
coherence generated in the process. We start by separating the uncollected work,

Hu = −
∑
n,m

pnpm|n ln pnpm|n (4.38)

= −
∑
n,m

pnpm|n ln pn −
∑
n,m

pnpm|n ln pm|n

= −
∑
n

pn

(∑
m

pm|n

)
ln pn −

∑
n

pn
∑
m

pm|n ln pm|n

= −
∑
n

pn ln pn −
∑
n

pn
∑
m

pm|n ln pm|n.

If we consider the basis
∣∣∣m′f〉=U † |mf ⟩ to be the coherent basis we can calculate the REC of

an eigenstate of the initial Hamiltonian giving,

Cr (|ni⟩⟨ni|) = S(Df (|ni⟩⟨ni|)) − S(|ni⟩⟨ni|) (4.39)

= S

(∑
m

〈
m′f

∣∣∣ni〉〈ni∣∣∣m′f〉 ∣∣∣m′f〉〈m′f ∣∣∣
)

(4.40)

= S

(∑
m

⟨mf |U |ni⟩ ⟨ni|U †|mf ⟩
∣∣∣m′f〉〈m′f ∣∣∣

)
(4.41)

= −
∑
m

pm|n ln pm|n, (4.42)

where the last line follows from the definition of pm|n = | ⟨mf |U |ni⟩ |2. Thus, taking all this
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together, Eq. (4.38) can be written as

Hu = S(ρ̄) +
∑
n

pnCr (|ni⟩⟨ni|) , (4.43)

where ρ̄=
∑
n ⟨ni| ρ |ni⟩ |ni⟩⟨ni| is the initial state dephased in the basis of Hi. Equivalently we

could have considered the REC in the basis |mf ⟩, which we will denote by C∗r (σ), then we have
the relation,

Cr (|ni⟩⟨ni|) = C∗r
(
U |ni⟩⟨ni|U †

)
, (4.44)

this form is less concise, but it emphasises the fact that what matters is the coherence between
the eigenstates of the final Hamiltonian and actual system state after the unitary evolution.

Equation (4.43) summarizes the rich physics behind the entropy of the work distribution. The
first term is the entropy of the initial outcomes, pn, of the TPM, i.e. the entropy of the so-called
diagonal ensemble [239–243]. If [ρ,Hi] = 0, it reduces to the von Neumann entropy of ρ, and if
ρ= e−βHi/Zi is a thermal state, it reduces to the Gibbs thermal entropy. If ρ= |ki⟩⟨ki| is any
eigenstate of Hi, S(ρ̄) vanishes and Eq. (4.43) reduces to Hu =C

(
|ki⟩⟨ki|

)
. The second term in

Eq. (4.43) establishes that the relevant coherences are those of each |ni⟩ in the eigenbasis |m′f ⟩.
Therefore, this term contains information on both the dynamics (work protocol) and of how Hf

differs from Hi. The process is incoherent if pm|n = |⟨mf |U |ni⟩|2 = δm,n, which occurs when
[Hi, U

†HfU ]=0. In this case, Eq. (4.43) reduces to Hu =S(ρ̄).
We can take this a step further,

∑
n

pnC (|ni⟩⟨ni|) =
∑
n

pnS (Df (|ni⟩⟨ni|)) (4.45)

≤ S

(∑
n

pnDf (|ni⟩⟨ni|)
)

(4.46)

= S (Df (ρ̄)) (4.47)
= C(ρ̄) + S(ρ̄) (4.48)

where the inequality is a consequence of the concavity of the von Neumann entropy. Subbing this
into our equation for Hu we get

Hu ≤ 2S(ρ̄) + C(ρ̄). (4.49)

The tightness of this bound is related to the purity of ρ̄, being saturated when ρ is an eigenstate
of Hi or for thermal states in the zero-temperature limit.

Combining Eqs. (4.37), (4.43) and (4.49), we can place a series of bounds on the entropy of
the work distribution,

HW ≤ S(ρ̄) +
∑
n

pnC
(

|ni⟩⟨ni|
)

≤ 2S(ρ̄) + C(ρ̄). (4.50)

The first inequality is often quite tight and relates HW to the coherences of each individual
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transition C
(

|ni⟩⟨ni|
)
. The second inequality bounds HW to the full REC of ρ̄ and its tightness

is related to the purity of ρ̄. Eq. (4.50) also allows us to estimate the dependence of HW with
temperature T , in the case of an initial thermal state. Both S(ρ̄) and the pn depend on T .
However, by convexity

HW ≤ S(ρ̄) + Cmax, (4.51)

where Cmax = max
n

C
(

|ni⟩⟨ni|
)
. The last term is now T independent, pushing the temperature

dependence solely to the Gibbs thermal entropy. The temperature dependence of the coherence
terms is therefore simple and bounded, while S(ρ̄) is the Gibbs entropy and remains temperature
dependent. We next turn to the study of HW in different models and show that it conveys crucial
information about the work statistics.

4.3 Landau-Zener Model

Consider a qubit with local Hamiltonian,

HLZ(ω) = ℏ∆σx + ℏωσz, (4.52)

where σi are the Pauli matrices. This is known as the Landau-Zener (LZ) model, it simulates a two-
level quantum system interacting with a time-dependent external field, ω(t). Although this is an
incredibly simple system, it captures the physics of a wide range of phenomena over many orders of
magnitude of length scales. Some examples of these phenomena include superconducting circuits
with Josephson junctions [244] which can perhaps, most famously, be used to encode physical
qubits in quantum computers; quantum dots can also behave as effective two-level systems under
the right conditions [245]. Another candidate for quantum computing that can be modelled by
the LZ model are atomic impurities, such as nitrogen-vacancy centers in diamond [246]. At larger
length scales, graphene connected to two gold electrodes can display the avoided crossing and
non-adiabatic transitions that are found in the LZ model [247]. Surprisingly, the physics of the
LZ model also appears in classical physics, one example of this can be found in the study of
nanomechanical resonators [248]. More detail and many more examples of LZ physics can be
found in the review by Ivakhnenko et. al. [249].

The eigenenergies are E−=−
√
ω2 + ∆2ℏ and E+ =

√
ω2 + ∆2ℏ. This tells us that the energy

gap between the ground and excited state is ∆E = 2
√
ω2 + ∆2ℏ. In the usual setup of the LZ

model, ∆ is fixed and ω is an externally controlled parameter that is varied from an initial to a
final value. We can see from Fig. 4.1 that the minimum energy gap, which is equal to 2∆, is
obtained when ω = ωc ≡ 0. The energy levels never cross, this is often referred to as an avoided
crossing at ωc. The instantaneous eigenstates of the model can also be calculated as

|E±⟩ = ϵ∓ |0⟩ + ϵ± |1⟩ (4.53)
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Figure 4.1: The Landau-Zener energy spectrum as a function of ω with ∆ = 1, highlighting the
avoided crossing at ω = 0.

where
ϵ± = 1√

2

√
1 ± ω√

ω2 + ∆2
. (4.54)

Perhaps the most common use case of the LZ model is to calculate the probability of a non-
adiabatic transition happening between the ground state and the excited state when the field is
varied at a finite speed. If we assume a linear ramp, ω(t) = νt, and start in the ground state
at t → −∞ and ramp through the avoided crossing to t → +∞, the probability of finding the
system in the excited state can be calculated as [249]

P+ = e−
π∆2
2ℏν . (4.55)

We see that the probability of obtaining a non-adiabatic transition scales exponentially with the
speed of the ramp. This analysis is related to the so-called adiabatic theorem [250] which says
that if a system initially in an eigenstate of the Hamiltonian and the Hamiltonian is varied slowly
enough then the system will remain in that instantaneous eigenstate. So, for the LZ model with
a linear ramp, the condition for the adiabatic theorem to hold is [234], ℏν/∆2 ≪ 1. We will be
working in the sudden quench regime where the adiabatic theorem definitely does not hold.

We assume the system starts in a thermal state at inverse temperature β, and consider a
sudden quench (U = I) from Hi = HLZ(ωi), with ωi < 0, to Hf = HLZ(ωf ). There are four
allowed values of W , given by E±(ωf ) −E±(ωi). For ωf ̸=±ωi and fixed ∆, these will always be
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Figure 4.2: Work fluctuations in the Landau-Zener model under a sudden quench. (a) First
four moments ⟨Wn⟩ of P (W ) as a function of ωf/∆ (normalized by their maximum value, at
ωf = ∆). (b) Entropy of the work distribution, Eq. (4.31) (red-solid), and the corresponding
bound, Eq. (4.49) (blue-dashed). Parameters: β = 0.1(ℏ∆)−1 and ωi = −20∆.

non-degenerate and thus HW =Hu. Figure 4.2(a) shows the first four moments ⟨Wn⟩ of P (W ),
as a function of ωf/∆. We can explicitly calculate these moments and we get,

⟨W ⟩ =
ωi(ωi − ωf ) tanh

(
β
√

1 + ω2
i

)
√

1 + ω2
i

(4.56)

⟨W 2⟩ = (ωi − ωf )2

for the first two moments. This explains why we see linear scaling for ⟨W ⟩ as a function of ωf .
Even when we fix the ωf and allow ωi to vary, there is no evidence of an avoided crossing in
the first few moments. Although knowledge of all the moments is sufficient to recover the entire
probability distribution, this is not feasible in practise. The cumulants also show no evidence of
the avoided crossing. In Fig. 4.2(b) we see a clear peak in HW around ωf = 0. The first term
in (4.43), S(ρ̄), yields a constant base value, as it depends only on the initial condition, this value
is displayed as the horizontal grey line in Fig. 4.2(b). The second term, on the other hand, presents
a peak at ωf =ωc. This term is a sum of coherence measures, highlighting that the interesting
features of the LZ model occur due to the generation of coherence between the Hamiltonian bases.
This also explains why we see the majority of non-adiabatic transitions occurring near the avoided
crossing where the coherence is largest [113]. By probing HW we can therefore highlight the
avoided crossing, which is the most important feature of the LZ model, and which is masked in
the moments. In Fig. 4.2(b) we also plot the bound. Eq. (4.49), which displays evidence of the
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avoided crossing and becomes tight around ωf = 0. The Landau-Zener model has proved to be
important when dealing with a number of quantum critical models including the XY and Ising
models [251] and the Kitaev model [252, 253]. These models can all be expressed as the sum
of non-interacting Landau-Zener models. This fact can be used to traverse the quantum critical
point adiabatically by applying a counter-diabatic control Hamiltonian [254]. Furthermore, the
entropy of the work distribution could be used to identify systems in which Landau-Zener physics
may be playing an important role.

4.4 Aubry-André-Harper Model

The localisation phenomenon is a major area of interest in condensed matter physics. An electron
in a lattice is said to be localised if its wave function has little to no overlap with neighbouring sites.
There are two main toy models that exhibit a transition from de-localised to localised, known as the
metal-insulator transition, as disorder is increased. One is the Anderson tight-binding model [255].
For non-interacting systems this model is described by the time-dependent Schrödinger equation
where the Hamiltonian acts on the state like

Hψj = Ejψj +
∑
k ̸=j

Vjkψk (4.57)

where Ej are independent random variables and V (r) is symmetric in all dimensions and falls off
faster than r−3 at infinity. Anderson showed that localisation occurs in this model in any dimension
when the disorder, produced by the random energy amplitudes, is sufficiently large. Additionally,
he showed that in one and two dimensions localisation occurs in the thermodynamic limit no
matter how small the disorder is [255]. The other main toy model used is the Aubry-André-Harper
Model (AAH) model, in this model the disorder is caused by the existence of two lattice potentials
where the ratio between their wavelengths is irrational. Unlike the Anderson model, the disorder
here is correlated rather than random [256], the irrational ratio of wavelengths ensures that the
lattice potential is aperiodic. For finite lattices, a rational ratio P/Q is sufficient but both P and Q
must be prime numbers larger than the size of the lattice [256] such that the potential is aperiodic
within the lattice. We chose to study the AAH model because there is a localisation transition
in one dimension whereas for the Anderson model there must be at least three dimensions for a
transition to be present [257]. Additionally, the AAH model requires no random disorder, and it
is therefore easier to examine analytically and finite dimensional properties.

We consider a single particle AAH model in the extreme tight binding limit on a lattice with
N sites, labelled by states |i⟩. The Hamiltonian is [256,258,259]

HAAH(∆) = ℏ
N∑
j=1

[
∆ cos (2πγj + η) |j⟩⟨j| − J

(
|j⟩⟨j + 1| + |j + 1⟩⟨j|

)]
, (4.58)

with periodic boundary conditions. The first term denotes the on-site potentials, with overall
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magnitude ∆, phase η, and γ modulation or ratio between the lattice potential wavelengths. One
interesting property of the AAH Hamiltonian can be seen in its representation in the momentum
basis,

|k⟩m = 1√
N

∑
j

e−2πiγkj |j⟩ . (4.59)

if we sub this into Eq. (4.58) the first term becomes

∆
N∑
j=1

cos (2πγj + η) |j⟩⟨j| = ∆
N

N∑
j,k,l=1

cos (2πγj + η) e2πiγj(l−k) |k⟩⟨l|m m (4.60)

= ∆
2N

N∑
j,k,l=1

(
eiηe2πiγj(1+l−k) + e−iηe2πiγj(l−k−1)

)
|k⟩⟨l|m m ,

where we applied Euler’s identity between the first and second lines. From here we can apply the
geometric series formula over j to obtain

N∑
j=1

e2πiγjn = e2πiγNn − 1
1 − e2πiγn . (4.61)

If γN is an integer, which we will assume, and n ̸= {0, N} this is just 0. Therefore, the only
non-zero terms left are for n = 0, i.e. k = l− 1 and k = l+ 1, and periodic boundary conditions.
These terms all sum to N , subbing this back into Eq. (4.60) gives,

∆
N∑
j=1

cos (2πγj + η) |j⟩⟨j| = ∆
2

N∑
k=1

(
eiη |k⟩⟨k − 1|m m + e−iη |k⟩⟨k + 1|m m

)
. (4.62)

Now we can look at the second term in Eq. (4.58),

J
N∑
j=1

(
|j⟩⟨j + 1| + |j + 1⟩⟨j|

)
= J

N∑
j=1

(
|j⟩⟨j + 1| + |j⟩⟨j − 1|

)
(4.63)

= J

N

N∑
j,k,l=1

(
e2πiγ[(j+1)l−jk] + e2πiγ[(j−1)l−jk]) |k⟩⟨l|m m

= 2J
N

N∑
l=1

cos (2πγl)
N∑

j,k=1

(
e2πiγj(l−k)) |k⟩⟨l|m m

= 2J
N∑
l=1

cos (2πγl) |l⟩⟨l|m m ,

where we once again applied the summation trick over j. So, if we set η = 0 we find that the
Hamiltonian in the momentum basis is

HAAH(∆) = ℏ
N∑
j=1

[
2J cos (2πγj) |j⟩⟨j|m m − ∆

2
(

|j⟩⟨j + 1|m m + |j + 1⟩⟨j|m m

)]
. (4.64)
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We see that the on-site energy term has changed from ∆ → 2J and the hopping rate has changed
from J → ∆/2. This tells us that when J = 2∆, the Hamiltonian is equivalent in the position
and momentum bases. The Heisenberg uncertainty principle for position and momentum as in
Eq. (2.6) tells us that if the AAH Hamiltonian has an exponentially localised eigenstate in the
position basis, this eigenstate must be exponentially delocalised or extended in the momentum
basis. Therefore, if there is a sharp localisation transition in this model it must occur at J = 2∆.
Indeed, we do find a sharp localisation transition in this model in the thermodynamic limit, for
∆<2J all eigenvectors are delocalized in space, in particular, for ∆=0, they are all plane waves,
while for ∆>2J , they become localized around the sites in the lattice.

We focus on the work distribution associated with turning the quasiperiodic potential off/on,
i.e. in going from HAAH(∆) → HAAH(0), and vice-versa. We refer to these as ∆→0 and 0→∆,
respectively. Following [256, 260, 261], we choose the lattice size, N , to be a Fibonacci number,
Fn and γ=Fn−1/Fn to be a rational approximation to the inverse golden ratio. This ensures that
while the periodic boundary conditions are fulfilled, the potential is aperiodic within the lattice as
in experimental realizations in optical lattices. We also get an integer value for Nγ which allows
for nice analytic properties such as the momentum basis transformation in Eq. (4.64)

4.4.1 Sudden Quench

We also choose to focus on sudden quenches (U = I). Following on from our discussion in
Sec. 4.1.3, we can look more closely at Eq. (4.29) in order to see in how fast our quench needs to
be for the sudden quench approximation to hold. Since our Hamiltonian is of the form

H(t) = A+ λ(t)B (4.65)

where our quench parameter is ∆(t), giving

B = −ℏ
2

N∑
i=1

(
|i⟩⟨i+ 1| + |i+ 1⟩⟨i|

)]
. (4.66)

we can write Eq. (4.29) as [234]

|c(1)
n (t)|2 = 1

ℏ2 |⟨nf |B |ki⟩|2
∣∣∣∣∫ t

0
(λτ − λ(t′))dt′

∣∣∣∣2 ≪ 1. (4.67)

Then if we assume that our quench is approximately linear from λ0 → λτ we get the following
upper bound on the quench time τ

τ ≪ ℏ
|λτ − λ0|

2
|⟨nf |B |ki⟩|

. (4.68)
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Finally, we need to explicitly calculate this for the AAH model,

|⟨nf |B |ki⟩| = ℏ
2

∣∣∣∣∣∣
∑
j

⟨nf |j⟩ ⟨j + 1|ki⟩ + ⟨nf |j + 1⟩ ⟨j|ki⟩

∣∣∣∣∣∣ . (4.69)

By splitting the two terms up into separate sums and applying the triangle inequality we get

|⟨nf |B |ki⟩| ≤ ℏ
2

∣∣∣∣∣∣
∑
j

⟨nf |j⟩ ⟨j + 1|ki⟩

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j

⟨nf |j + 1⟩ ⟨j|ki⟩

∣∣∣∣∣∣
 . (4.70)

Now we can apply the Cauchy-Schwarz inequality to both sums giving

|⟨nf |B |ki⟩| ≤ ℏ
2

√√√√√
∑

j

⟨nf |j⟩ ⟨j|nf ⟩

∑
j

⟨ki|j + 1⟩ ⟨j + 1|ki⟩

 (4.71)

+ ℏ
2

√√√√√
∑

j

⟨nf |j + 1⟩ ⟨j + 1|nf ⟩

∑
j

⟨ki|j⟩ ⟨j|ki⟩

 = ℏ. (4.72)

So, when we have a quench from ∆→0 or 0→∆ the quench time must be much less than

τ ≪ 2
∆ . (4.73)

These kinds of timescale are achievable in these models when using ultra cold atoms in an optical
lattice. In one experiment [261] they had a value of ℏJ = h × 150 Hz, meaning that in order to
perform quenches up to ∆ = 4J the quench time would need to be much smaller than 5 × 10−4s.

4.4.2 Approximating the Energy Spectrum

Figure 4.3(a,b) shows the work distribution, Eq. (4.1), for the two protocols, assuming the system
starts in the ground-state of the initial Hamiltonian. The spectrum of HAAH(∆)/ℏ is bounded
between {−2J−∆, 2J+∆} [262]. This bound is rather loose, however. To obtain a tight bound,
we can use the fact that the eigenstates of our Hamiltonian are exponentially localised in position
space for ∆ > 2J and exponentially localised in momentum space for ∆ < 2J . This means that
a perturbative expansion of the Hamiltonian will be particularly effective at capturing the physics
of the system. In the ∆ > 2J regime we can factor ∆ out of the Hamiltonian to get,

HAAH(∆) = ℏ∆
N∑
j=1

[
cos (2πγj + η) |j⟩⟨j| − J

∆
(

|j⟩⟨j + 1| + |j + 1⟩⟨j|
)]

(4.74)

= ℏ∆
[
H0 − J

∆V

]
,
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Figure 4.3: Work statistics of the AAH model (4.58). (a) P (W ) for the ∆ → 0 protocol,
for ∆/J = 1.5, 2, 2.5 and 3. (b) Similar, but for 0 → ∆. (c,d) Corresponding mean and
variance vs. ∆/J , for the two protocols. (e,f) HW vs. ∆/J [Eq. (4.31)] for the two protocols along
with the upper and lower bounds derived in Eq. (4.43). (Inset): dHW /d∆

∣∣
∆=2J as a function of a

Fibonacci number N , showing that in the thermodynamic limit HW will change discontinuously at
∆/J = 2. In all simulations the system starts in the ground-state, N = F16 = 987 and η = 1.2,
except in the insets of (e,f), which were averaged over 50 values of η.

the eigenvalues of the unperturbed Hamiltonian are therefore E(0)
j = cos (2πγj + η). We can now

expand this in powers of −J∆ . The first order correction to the energies is just
〈
j(0)

∣∣∣V ∣∣∣j(0)
〉

which
is zero for all j. The second order correction is given by

E
(2)
j =

∑
k ̸=j

|
〈
k0∣∣V ∣∣j0〉 |2

E
(0)
j − E

(0)
k

(4.75)

= 1
cos (2πγj + η) − cos (2πγ(j + 1) + η) + 1

cos (2πγj + η) − cos (2πγ(j − 1) + η) .

The maximum and minimum eigenvalues occur for cos (2πγj + η) ≈ 1 and −1 respectively. This
gives us an approximate estimate of the range of the spectrum between

E>± = ±
(

∆ + 2J2

∆
1

1 − cos (2πγ)

)
+O

(
J4

∆3

)
, (4.76)

in the ∆ > 2J regime. We can perform an equivalent analysis for the momentum basis Hamiltonian
in the ∆ < 2J regime to get

E<± = ±
(

2J + ∆2

4J
1

1 − cos (2πγ)

)
+O

(
∆4

J3

)
. (4.77)

96



These approximations are even equal at ∆ = 2J giving a continuous estimate for the maximum
and minimum eigenvalues that we can define as

E±(∆) =

E
<
± 0 ≤ ∆

J ≤ 2

E>±
∆
J > 2

.

These results are for ∆ and J both positive but changing the signs will only affect the sign in
front of the maximum and minimum energies and not on their form or absolute value.

This analysis can help us understand the maximum and minimum work in both protocols. For
the ∆ → 0 protocol we know that starting in the ground state Ei ≈ E−(∆) = −E+(∆), then
the final energy can range between Ef ∈ [−2J, 2J ]. We can use this to put an approximate
bound on the possible work values, W ∈ [E+ − 2J,E+ + 2J ]. Since E+(∆) ≥ 2J for all ∆, we
get W > 0 in the ∆ → 0 protocol. On the other hand, for 0 → ∆, we have Ei = −2J ,and
Ef ∈ [−E+(∆), E+(∆)]. This gives a range of works W ∈ [2J − E+, E+ + 2J ] meaning that
W ≶ 0. Thus, work can be extracted by turning the potential on, but not by turning it off.

The overall behaviour of P (W ) clearly reflects the localization transition at ∆=2J . For both
protocols, quenches that keep the system in the delocalized phase, i.e. ∆< 2J (corresponding
to the first two upper panels of Fig. 4.3(a,b)), result in a P (W ) with small support, and mostly
concentrated around a minimum work value. In this regime, the work cost of turning the potentials
on or off is overall small and fluctuates very little. This is also evidenced in Fig. 4.3(c,d), which
plots the mean and variance of W , for the two protocols. Conversely, when ∆/J >2 the support
of P (W ) increases significantly. For ∆ → 0 (Fig. 4.3(a)) the distribution reflects the smooth
energy spectrum, while for 0→∆ [Fig. 4.3(b)] it is very irregular due to the fractal nature of the
localized spectrum. The corresponding mean and variance of the work are shown in Fig. 4.3(c,d)
and, except for ⟨W ⟩ in the 0 → ∆ protocol which turns out to be identically zero, all grow steadily
with ∆/J . To understand why the work is zero in the 0 → ∆ protocol we need to look more
closely at how the average work is calculated

⟨W ⟩ = Tr [(Hf − Hi) |ψ0⟩⟨ψ0|] , (4.78)

where |ψ0⟩ is the ground state of the initial Hamiltonian. Using Eq. (4.58) we can rewrite this as

⟨W ⟩ = ∆
N∑
k=1

cos(2πγk + η) |⟨k|ψ0⟩|2 . (4.79)

It is clear from this equation that if |ψ0⟩ is independent of ∆ then the work will scale linearly with
∆, this explains why we only see evidence of the localisation transition when Hi changes with ∆.
When Hi = HAAH(0) we can additionally prove that ⟨W ⟩ = 0. This follows from the fact that

97



Figure 4.4: The entropy of P (W ) for (a) initial thermal states with temperatures Jβ =
{10−2, 100, 102, 104}(red [top], blue, green, black [bottom]) and (b) every eigenstate of the initial
Hamiltonian, HAAH(0). These are all for the 0 → ∆ case but the ∆ → 0 case is very similar.
The choice of phase and system size are as in Fig. 4.3.

the ground state is completely delocalised: |ψ0⟩ = 1√
N

∑N
j=1 |j⟩. Substituting this in we get

⟨W ⟩ = ∆
N

N∑
k=1

cos[2πγk + η] (4.80)

= ∆
N

R
[
N∑
k=1

e2πiγk+iη
]

(4.81)

= ∆
N

R
[
eiη
ei2πγN − 1
1 − e−i2πγ

]
= 0. (4.82)

The last equation comes from the fact that we use a rational approximation for the golden ratio
given by the ratio of Fibonacci numbers, γ = Fn−1/Fn, and N = Fn. Unlike in the previous
example, where due to the simplicity of the LZ model the moments of the distribution showed no
signatures of the avoided crossing, here we find that some evidence of the transition is imprinted
on the moments for ∆→0, albeit in a significantly less striking manner than in the entropy.

4.4.3 Entropy of the quantum work distribution

HW is plotted in Figs. 4.3(e,f). It shows a jump at ∆/J = 2, the sharpness of which depends
on the lattice size N . To illustrate this, the insets of Figs. 4.3(e,f) show the slope H ′W (2) :=
dHW /d∆, evaluated at ∆=2J , for different system sizes, N . A fit of the data reveals the relation,
H ′W (2) ∝

√
N , which implies that, in the thermodynamic limit, HW will change discontinuously
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at the localization transition. The entropy therefore succinctly captures the criticality of the AAH
model. The two bounds in Eq. (4.37) are also shown in Figs. 4.3(e,f). For any ∆ ̸= 0, the
spectrum of the AAH model is non-degenerate but for ∆ = 0 there is a two-fold degeneracy in
all eigenvalues except the minimum and maximum eigenvalues. This explains why for ∆ → 0
(Fig.4.3(e)) the curves differ from HW , but for 0 → ∆ (Fig.4.3(f)) they coincide: the former
depends on the degeneracies of HAAH(0), leading to γmax = 2, while the latter does not since we
start in the (non-degenerate) ground-state. For ∆/J >2, HW is close to HW − ln γmax, tending
to it asymptotically as ∆/J→∞ because the probability of measuring in either of the degenerate
states becomes equal.

It is clear from the above discussion that HW is an effective quantifier of localisation. To better
understand why this is the case, we must first look at the most common quantifier of localisation
in the literature, the inverse participation ratio (IPR). The IPR of a state |ψ⟩ is the sum of the
squared overlap of |ψ⟩ with the localised states, i.e.

IPR(|ψ⟩) =
∑
j

|⟨j|ψ⟩|4. (4.83)

When the state is fully localised, we have IPR(|ψ⟩) = 1 and a fully delocalised state gives
IPR(|ψ⟩) = 1/N . We can define a modified version of the IPR where the localised states are
replaced by the eigenstates of the final Hamiltonian,

In :=
∑
m

p2
m|n =

∑
m

|⟨mf |U |ni⟩|4. (4.84)

These two quantities would coincide for a ∆ → ∞ sudden quench but it is unrealistic to perform
this as a sudden quench. In fact, due to the position-momentum duality in the model, for the
∆ → 0 protocol I can be thought of as an IPR measuring localisation in momentum space. This
quantity is the inverse of the “effective dimension” [263, 264] which has been used to investigate
localisation and quantum scars. Noticing that − ln In is the Rényi-2 entropy of pm|n, it then
follows that,

C (|ni⟩⟨ni|) = −
∑
m

pm|n ln pm|n ≥ − ln In. (4.85)

Then subbing this into Eq.(4.43) we can relate the modified IPR to the entropy of the work
distribution,

HW ≥ Hu ≥ S(ρ̄) −
∑
n

pn ln In. (4.86)

While Fig. 4.3 was concerned with the ground state, in the AAH model HW shows a quali-
tatively similar behaviour at finite temperatures [Fig. 4.4(a)]. As the temperature increases, HW

tends to grow, but maintains the same overall shape as a function of ∆, and still exhibits strong
signatures of the transition. This is due to the fact that in a localization transition all eigenvectors
undergo a sudden change. This means that all terms C

(
|ni⟩⟨ni|

)
in Eq. (4.43) behave similarly at

the localisation transition, resulting in a consistent shape of the HW curve since S(ρ̄) is indepen-
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Figure 4.5: (a) The entropy of the work distribution for the ∆ → 0 (solid, red) and 0 → ∆
(dashed, blue) ground state quenches for the α model, the grey dotted line corresponds to the
location of the mobility edge (b) The spectrum of the α model with the mobility edge (dashed,
black) shown, the colour is a function of the work distribution for each initial eigenstate in the
∆ → 0 protocol. The red, dotted line represents the perturbative approximation for the ground
state energy and the green dots are the estimated location of the mobility edge from the work
distribution entropy in (a). Parameters: α = 0.2, J = 1, N = 987.

dent of ∆/J and the second term is just an average over all C
(
|ni⟩⟨ni|

)
. Another consequence

is that the bound (4.51) is very tight because the difference between the largest and smallest
C
(
|ni⟩⟨ni|

)
is small. We confirm this numerically in Fig. 4.4(b), where we plot C

(
|ni⟩⟨ni|

)
for all

eigenvectors. We thus reach the conclusion that the monotonic vertical shift in HW , observed
in Fig. 4.4(a), is predominantly due to the Gibbs entropy S(ρ̄). Our bounds therefore allow us
to pinpoint different physical origins for different effects, namely thermal fluctuations, and the
localization transition.

4.4.4 Mobility Edges

In the AAH model the localisation transition occurs at the same value of ∆/J for all energies,
this is due to the position-momentum duality in the model. When this duality symmetry is broken
in a controlled manner, the model tends to display a mobility edge instead [265–268]. A mobility
edge corresponds to a critical value of the energy that demarcates extended eigenstates from local
eigenstates for a specific realisation of the Hamiltonian. In the models that we will consider this
critical energy will be a function of the disorder parameter ∆ and the hopping parameter J . An
example of such modification of the AAH Hamiltonian takes the form [266]

Hα(∆) = ℏ
N∑
j=1

[
∆ cos (2πγj + η)

1 − α cos (2πγj + η) |j⟩⟨j| − J
(

|j⟩⟨j + 1| + |j + 1⟩⟨j|
)]
, (4.87)
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where α ∈ (0, 1), with α = 0 corresponding to the AAH model. In this model the mobility edge
can be calculated exactly as [266]

αE = ∆
(∣∣∣∣2J∆

∣∣∣∣− 1
)

(4.88)

One interesting question is, can the entropy of the work distribution still capture the localisation
transition in the presence of a mobility edge. Figure 4.5(a) shows that both the ∆ → 0 and
0 → ∆ protocol do a good job at highlighting the mobility edge for the ground state, where the
grey vertical line represents its location for the ground state energy of our Hamiltonian. We see
that both the ∆ → 0 and 0 → ∆ protocol have a sharp uptick at the mobility edge which suggests
that the entropy of the work distribution could be a useful tool in identifying its location. This
is quite surprising for the 0 → ∆ protocol because the ground state is fully extended, therefore,
you would expect the entropy to be approximately proportional to the number of localised states
in the basis of the final Hamiltonian. In Fig. 4.5(b) the entire spectrum of Hα(∆) is plotted for
N = 987 and α = 0.2. The colour of each eigenstate depends on the value of HW / ln(N) when
that eigenstate is the initial state in the ∆ → 0 protocol. It is clear the entropy of the work
distribution is able to capture the key physical characteristics at all energies. This means that
with enough iterations of the TPM protocol starting with an initial thermal state it should be
possible to recreate the entire mobility edge. It has been suggested that mobility edges in AAH
style models may be observable via Raman scattering experiments [265] and recently a mobility
edge has been observed experimentally in both this model [269] and another generalisation of
the AAH model [270]. Mobility edges have also been observed in the Anderson model in three
dimensions [271].

Another interesting idea would be to try to estimate α using just a single measurement in the
basis of the final Hamiltonian. This is tricky because the value of eigenvalues of the spectrum
are not known analytically for ∆ ̸= 0. One strategy would be to prepare the ground state at
∆ = 0 and quench to a finite ∆, we would expect to get an entropy like the blue, dashed line in
Fig 4.5(a). We can use this to identify the value of ∆ that the ground state mobility edge is at.
The ground state energy at the mobility edge can be estimated by taking the minimum energy
measured at that value of ∆. Then using the fact that there is a mobility edge at E = 0 and
∆/J = 2 for any value of α, we can use Eq. (4.88) to estimate α. For the ∆ → 0 protocol it is
a little trickier because we do not know the ground state energy exactly. To get around this we
can once again use perturbation theory to get an estimate for the ground state energy. Since, in
this model, we do not have the Fourier transform symmetry, only the ∆ > 2J limit can be easily
calculated. The Hamiltonian once again has no first order correction, the second order correction
to the maximum and minimum eigenvalues is given by

E>± = ±
(

∆
1 ∓ α

+ 2J2

∆
(1 ∓ α)(1 ∓ α cos (2πγ)

1 − cos (2πγ)

)
+O

(
J4

∆3

)
. (4.89)
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We can use this to estimate E(∆) at the mobility edge. This estimate corresponds to the bottom
green point in Fig. 4.5(b). From there we follow a similar process as we did for the 0 → ∆ protocol
to estimate α which is just (−1 times) the slope of the line connecting the two points. By applying
this method for the ∆ → 0 protocol with α = 0.2, we get an estimate of α = 0.200002. For larger
value of α the estimate is not as good with α = {0.4, 0.6} giving estimates of α = {0.408, 0.606}.
Mobility edges are not necessarily linear functions, even for modifications to the AAH model [267],
therefore this method has very limited applicability.

4.5 Conclusions

In this chapter we have introduced the entropy of the quantum work distribution and demonstrated
that it can be a useful tool for probing the properties of quantum systems under quench dynamics.
The entropy captures the complexity of the full work distribution and we have shown that under
sudden quench dynamics it is sensitive to key features of the Hamiltonian such as avoided crossings,
localization transitions and mobility edges. One possible direction for further research would be
to analyse the effect of different kinds of quenches, such as infinitesimal quenches or slow-driving
quenches, on the entropy. Our main result, Eq. (4.50), shows that HW can be understood as
stemming from two distinct contributions, one given by the entropy of the initial state, dephased
by the TPM, and a second term related to the coherences created by the work protocol. More
specifically, what matters are the coherences between the initial states, evolved in time, U |ni⟩
and the eigenbasis of the final Hamiltonian |mi⟩. It therefore accounts not only for the change
in Hamiltonian, from Hi → Hf , but also for the entire work protocol, summarized by U . The
contribution of quantum coherence to work has been explored in the past [120,272,273], but only
for initial thermal states, and with a focus on the first few moments. We have shown that the first
few moments and cumulants are not always sufficient to capture the important features of the
work distribution and can vary drastically depending on the direction of the quench. We therefore
believe that the entropy of the work distribution could serve as a powerful tool for characterizing
work statistics away from equilibrium. The entropy of the work distribution may be useful for
characterising different critical systems such as the the transverse field Ising model [274] or the
Lipkin-Meshkov-Glick model [275]. Although, the localisation phenomenon is particularly suited
to this method due to the similarity between the IPR and the entropy of the work distribution.
We also demonstrated that the entropy of the work distribution is a candidate for experimentally
identifying mobility edges in quasi-periodic models. It would be interesting to see if the work
distribution can capture the localisation phenomenon in disordered lattices.
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Chapter 5

Conclusions and outlook

The overarching theme of this Thesis has been in examining and characterising the complex dy-
namics of quantum systems. This involved exploring geometric characteristics of general quantum
evolutions, assessing the utility of such evolutions in more practical metrological settings, and
probing the thermodynamics of many-body dynamics. Achieving the results necessitated carefully
assessing and understanding the associated probability distributions. First, in Chapter 2 we learned
that there is a unique contractive Riemannian metric on the space of pure quantum states, the
Fubini-Study metric. Probability distributions also have such a unique metric, the Fisher informa-
tion metric. It can be shown that the Fubini-study metric is just the Fisher information metric
extended to complex probability amplitudes. For mixed quantum states we see both of these con-
cepts combined, the fundamental difference now, is that the mixed states can only be represented
as a matrix whereas pure states and probability distributions are vectors. This means that the inner
product requires matrix multiplication and since matrices do not commute we end up with many
possible ways to define the inner product. This results in an infinite family of distance measures,
each with their own geodesic path. This ambiguity has led to a lot of confusion in the quantum
speed limits (QSL) literature, there are many papers where the authors compare their formulation
of the speed limit to other popular versions. We highlight that the precise physical meaning of
this kind of analysis is usually difficult to pin-down. We established that the important properties
of a QSL are that it is achievable and that saturating the bound corresponds to minimising a
useful quantity. Both of these properties have been lacking in the QSL literature, particularly the
second point. An example of this is the fact that the vast majority of quantum speed limits are
completely insensitive to the instantaneous speed along the path. In an attempt to remedy this,
we introduced a new kind of QSL which we call action quantum speed limits. We do not claim
that these QSLs are always better than geometric QSLs, but we highlight that even though action
QSLs are strictly looser than their geometric counterpart that does not mean that they are useless.
In certain scenarios, such as asymptotic dynamics they give much more realistic results for the
QSL time.

We hope that this work can inspire new directions in the field of QSLs that focus on applicability
of the bound rather than simply on the tightness. The inspiration for action quantum speed limits
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came from analysing older work in classical thermodynamics [115,116]. It would be interesting to
explore this connection further and see if there are any other concepts in the geometry of classical
thermodynamics that could be investigated further for quantum systems. We point to one place
where this connection could occur in slow-driving quantum thermodynamics [120,126,142]. Here
the action can be related to the irreversible entropy production for certain kinds of processes.
It is possible that a more general connection can be drawn between the master equations and
different quantum Fisher information metrics. Another area that is often overlooked in the QSL
literature is figuring out how to actually achieve the minimum time set by the QSL once it has
been calculated. For two of the quantum Fisher information metrics the geodesic path is known,
but for all the others we must rely of numerical techniques. Action QSLs are particularly suited
to optimal control techniques due to their form as an action. Additionally, it is simple to apply
constraints to the system and optimise the action under those constraints.

Whenever measurements are performed, different measurement results occur according to a
probability distribution. Metrology is the process of both sampling the probability distribution and
using that same distribution to estimate an unknown parameter. The Cramér-Rao bound bounds
the variance of that estimate by the inverse of the Fisher information. When it comes to quantum
parameter estimation the ambiguity in quantum Fisher information metrics is no longer a problem
since there is a strict hierarchy. The smallest inner product is given by the symmetric logarithmic
derivative inner product. In fact, this quantum Fisher information can be defined as the Fisher
information of the probability distributions obtained from a specific POVM, optimised over all
possible POVMs. In the thesis we focused on the topic of sequential measurement metrology,
where repeated measurements are performed on the same system. This allows for correlations
to be generated between the probability distributions associated with each measurement result.
These correlations can have a positive or negative effect on the resulting Fisher information and
very little is known about when or why this happens. We were able to prove that when the system-
bath interaction is independent of the parameter that you are trying to estimate, it is impossible
for the correlations to increase the Fisher information. We additionally showed that the Fisher
information is always smaller than the optimal coarse-grained measurement on the environment
itself.

When the interaction Hamiltonian does depend on the unknown parameter, significant in-
creases in the Fisher information are possible. We demonstrated this by considering the ubiquitous
case of a probe coupled to a thermal bath. By performing sequential projective measurements in
the energy basis, the Markov order of the resulting probability distribution is 1. This means that
for a large number of measurements the Fisher information can be approximated as F1:N ≈ NF2|1

where F2|1 is the Fisher information attainable when the result of the previous measurement is
known. We demonstrated that it is not immediately obvious how to even check if the addition
of correlation has a positive or negative effect because there is not always a suitable limit that is
experimentally realisable. Luckily, for the case of probe-based thermometry, several of the possible
candidates are equivalent and are equal to the thermal Fisher information, which is very much
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realisable in practice. We then proved that any sequential metrology scheme could be simulated
using a collision model setup with projective measurements performed on the outgoing auxiliary
units. When dealing with a collisional setup it is not always possible to have fine grained control
over the waiting time between measurements as we had assumed for the sequential measurement
scheme. To account for this, we investigated the effect of the waiting time being described by
a probability distribution. We were able to prove that as long as the steady state of the process
did not depend on the waiting time, the overall process was still Markov order 1 on average. This
meant that we could directly compare different waiting time distributions(WTDs). The effect of
introducing a WTD was to lower the peak of the Fisher information but allow for an advantage
over a larger parameter range. There were certain WTDs where the collisions became so clumped
together that the correlations were too strong, and the collision model performed worse than the
thermal Fisher information. When we look closer at the actual form of the Fisher information
of our thermometry setup, we see that there are two main contributions. One that comes from
the fact that the thermal Gibbs state depends on the temperature, this gives rise to the thermal
Fisher information. The second contribution is a result of the temperature dependence of the
thermalisation rate, Γ. Finally, we showed that it is not only projective measurements that lead to
Markov order 1 processes, there are also certain POVMs that can achieve this. In the collisional
setup, we could implement such a POVM using a full swap interaction, this allowed us to achieve
slightly higher Fisher information than is attainable with projective measurements.

The probes that we considered are the optimal probes for estimating temperature at thermal
equilibrium when optimised over all possible Rabi frequencies of the probes, still, it is not clear
this means that these are the optimal probes for a sequential measurement scheme. We know
that when the Rabi frequency is not tuned correctly, the highly degenerate probes are not even
optimal at thermal equilibrium. The addition of variable waiting times depending on the result
of the previous measurement could also have an effect of the optimal probes. More research is
needed to pin down exactly when correlations have a positive effect on the Fisher information. We
proved that for the correlations to be advantageous there needs to be some additional information
about the unknown parameter contained in the system-environment interaction. This alone is not
enough to guarantee advantage, our analysis of parameter dependence suggests that these effects
need to interfere with each other constructively. One tool that is missing from our analysis is the
presence of genuinely quantum correlations. The most obvious way to introduce these would be
via the collisional setup, quantum correlation could be built up between the auxiliary systems and
then they could all be measured at once at the end. It is not clear what the Fisher information
would look like in this scenario and if it would still maintain a relatively simple form but nonetheless
this would be an interesting direction to explore. Obtaining the Fisher information is one thing,
but in order to actually estimate the unknown parameter an estimator is required and that is
not always so simple. For our sequential measurement scheme, we have access to the transition
probabilities and the frequencies of each measurement result which are both be functions of T .
If an estimator could be constructed that approached the Cramér-Rao bound for any sequential
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measurement process this would be good evidence of the practicality of this scheme.
Probability in classical thermodynamics comes from a lack of information about the microstate

of the system, in quantum mechanics the probabilities are slightly more fundamental and occur
as the result of measurements. We have argued in Chapter 1 that in some sense even these
probabilities are related to a lack of information (at least until you look at the measurement
result) but nonetheless it can give a more solid basis for the appearance of probabilistic laws such
as the Crooks relation [232]. In Chapter 4 we considered the two-point measurement scheme
where a projective measurement is performed on the system at the start and end of the process in
the respective energy bases. Each of these measurements have a probability associated with them,
the first measurement depends only on the initial state, but the second measurement depends on
the result of the first measurement in a very similar way to the sequential measurement scheme
considered in Chapter 3. The difference here is that the final measurement basis is not necessarily
the same as the initial measurement basis. The work of a single iteration of this process is the
difference between the eigenvalues of the initial and final measurement results. This leads to
a probability distribution associated with each value of the work. This work distribution can be
tricky to deal with analytically because it involves collecting together transitions with identical work
values, this can be very problem specific. Instead, we chose to work with the uncollected work
distribution, but provided an upper and lower bound on the work distribution itself. In practice
the collected and uncollected work distributions behave very similarly. The work distribution itself
can be quite difficult to interpret so usually summary statistics are used such as the moments
or cumulants of the distribution. We introduced a new summary statistic, the entropy of the
work distribution. We were able to split the uncollected entropy up into a classical component
that depends only on the initial state and a quantum component that measured the coherence
generated between the initial and final measurement bases.

We proceeded to calculate the entropy of the work distribution for a number of important
quantum models. First we looked at the Landau-Zener model, which displays an avoided energy
level crossing, a common feature in a wide range of physical phenomena. The entropy showed a
clear peak at the avoided crossing that was not present in either the moments or the cumulants.
Next we looked at the Aubry-André-Harper Model, an example of a model that displays a localisa-
tion transition in the thermodynamic limit. Here we find that the entropy of the work distribution
also displays a sharp jump at the critical value that becomes discontinuous in the thermodynamic
limit. Here, the moments do show some signals of the localisation transition, but it is not as
clear, and is only present in one direction of the quench. Another model that we consider is a
generalisation of the Aubry-André-Harper Model that displays a mobility edge. A mobility edge is
a localisation transition that is energy dependent. Surprisingly, the entropy of the work distribution
is still effective at locating the mobility edge for both directions of the quench.

There is plenty of scope to extend this work by looking at other models and by moving past
the sudden quench regime. One idea would be to introduce a linear quench and see if the mobility
edge is still visible in the entropy beyond the linear quench regime. Another possibility would be
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to consider a different method of obtaining the work distribution as the two-point measurement
scheme is not always realistic in practice.

In summary, we have demonstrated the power and flexibility of open quantum systems for
exploring a variety of physical phenomena. We used them to explore geometric properties of
quantum evolutions, the practical role of these properties in metrology, and the subtleties of quan-
tum thermodynamics. By analysing the interplay between superposition and classical probabilities,
we highlighted the cause of ambiguity in quantum speed limits, emphasizing the importance or
attainability and meaningful limits. We explored the concept of sequential measurement metrol-
ogy, shedding some light on the effects of correlation on the Fisher information, and related this
scheme to equivalent collisional setups. Finally, we developed a new tool for probing the physics of
avoided crossings and localisation transitions in the form of the entropy of the work distribution.
This work lays the foundation for continued work, encouraging the consideration of practicality in
fundamental bounds, estimation schemes and thermodynamic protocols.
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