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In recent years, quantum experiments have become increasingly precise, fast, and capable

of high resolution. Particular interest has been given to quantum control, which aims to prepare,

manipulate, and steer quantum states toward desired outcomes. Common applications of quan-

tum control include state preparation for quantum computing algorithms, protocols to implement

nanoscale machines, and feedback to guide a system’s evolution. Feedback involves collect-

ing information from quantum measurements, then acting on the system based on measurement

outcomes. The standard measurement model in quantum mechanics is the projective measure-

ment, which destroys quantum coherence by causing the wave function to collapse to a subspace

spanned by the eigenstates of the measured operator.

This thesis explores the theory of weak measurement processes, a class of measurement

protocols that extract information from a quantum system while (partially) preserving coherence.



The weak measurement protocol has a tunable parameter that controls the information obtained

per measurement cycle and the disturbance (decoherence) introduced into the quantum system.

Using this nondestructive form of measurement, one can extract information during the system’s

evolution and apply real-time feedback to drive the system’s evolution to specific target states.

A general master equation is derived to describe continuous feedback using weak measurements

with general filtering processing. Particular cases of low-pass and band-pass filters are studied

in detail and applied to a harmonic oscillator cooling protocol. Results show that ground-state

cooling of the quantum harmonic oscillator can be achieved.

Finally, this dissertation discusses an experimental and computational project that uses ma-

chine learning to estimate the temperature and the number of atoms of a cold atomic cloud. The

goal is to use non-destructive measurements to infer hidden properties of the atomic ensemble

without disturbing the atomic trap. Results show that reasonable accuracy can be achieved using

various neural network architectures, depending on the complexity of the input data. The accu-

racy and responsiveness of the trained models make them suitable for real-time estimators that

can be used in closed-loop feedback.
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Chapter 1: Introduction

In this chapter, I introduce the key concepts discussed in this thesis. I start from a historical

perspective about the main themes related to the thesis. Later, I discuss in detail the role of

measurements in quantum theory and some of the open questions I try to answer in the following

chapters. A brief overview of the quantum and stochastic formalisms used throughout the work

is presented. Finally, the organization of the thesis is introduced.

1.1 History of quantum mechanics

Quantum mechanics is considered one of the most successful theories of nature. It started in

the early 1900s with Planck, Einstein, Bohr, and others [7–9]. The accomplishments of the early

quantum theory include understanding black body radiation (and the ultraviolet catastrophe), the

explanation of the photoelectric effect, and the quantization of the hydrogen spectrum.

Soon after the early success, a more modern approach to quantum mechanics started to

be consolidated by Schrödinger, Born, and Heisenberg [10–12]. At this point, the mathematical

language was developed, and part of the notation we still use today was introduced. The solution

of the quantized energy levels of the quantum harmonic oscillator was an important milestone in

the development of the new theory. Later, a new quantum mechanics revolution started with what

is today known as second quantization. This formalism extends quantum mechanics to many-
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body systems and includes the role of statistics in the fundamental quantum theory. Researchers

including Dirac, Fock, and Bose [13–15] led the way in studying collective phenomena in quan-

tum systems. The inclusion of statistical rules in the quantum theory gave rise to the notion of

fermions and bosons.

In the 1960s, important work carried out by Bell and others [16–18] elucidated surprising

aspects of quantum probability theory. The idea is that measuring quantum entangled systems

can yield results incompatible with the standard notions of classical probabilities. The notions

of locality and classicality were solidified, and the Bell inequalities helped debunk the theory

of hidden variables, which was developed to explain some of the non-intuitive consequences of

quantum probabilities.

The 1980s and 1990s witnessed the emergence of modern atomic and laser physics [19–

22]. The increased control and manipulation of atoms allowed experimentalists to trap and cool

atoms to previously unimaginable levels. By the end of the 1990s, the first verification of the

Bose-Einstein condensation (BEC) was reported in rubidium atoms [23, 24]. Since then, much

progress has been made in cold atoms, from the precise measurement of time (which led to the

development of atomic clocks) to the study of topology in many-body systems [25–30].

Various other important results in multiple fields of physics were obtained along the way,

and this summary is not meant to represent an exhaustive list of accomplishments in the recent

history of physics. In particular, special attention has been paid to quantum computation in the

past two decades. Significant milestones in the realization of quantum qubits have been reached

in recent years, particularly in the control and scaling of quantum systems [31–34]. The theory of

quantum algorithms [35–37] also made important achievements, such as showing an exponential

upside in performance that quantum computers can have compared to classical analogs. The
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typical quantum algorithm runs by preparing a particular initial state, then applying a series of

transformations that encode the steps of the computation, and at the end, performing some form

of quantum measurements to collect the results. The ability to measure the quantum system and

interact with the qubits plays an essential role in developing quantum computation technologies.

This is one example of the increased interest in quantum measurements and the skill to interact

with quantum systems precisely.

An even more recent field has emerged in the past ten years: quantum thermodynamics [38–

40]. The goal in this field is to extend and investigate classical results of thermodynamics to the

quantum realm. The main challenge is to connect results derived in the nineteenth century without

any concept of microscopic constituents of matter to a modern physics framework that involves

particles, wave functions, and operators. Concepts like energy conservation, entropy, trajecto-

ries, and the definitions of work and heat are still active research areas and open questions in the

field [41–44]. Active research areas include applications such as designing quantum thermal ma-

chines and thermodynamic processes to harness quantum phenomena to boost batteries, energy

production, computation, and information storage.

All these developments of more than a century made it possible to control quantum systems

at the nanoscale or smaller, with temperatures colder than nanokelvin, to study processes that can

last fractions of nanoseconds. In this thesis, I aim to present results related to quantum control

and feedback. Discussing quantum measurement mechanisms and how to model such processes

is necessary to understand quantum feedback and how one can improve the existing protocols to

achieve such a level of control.
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1.2 Quantum measurements

Much of the focus of quantum mechanics in the last century was on understanding how mi-

croscopic phenomena shape emergent classical behavior: the atomic spectral lines, the selection

rules, the heat capacity of metals, the properties of superconductors, and many others. A parallel

but related aspect of quantum theory is quantum measurement. The measurement process doesn’t

follow from the dynamical evolution described by Schrödinger’s equation and enters the quantum

theory in the form of Born’s postulate [11].

Quantum mechanics is a fundamentally statistical theory. All experiments have measure-

ments typically described by probability distributions rather than single outcomes, which is not

due to the experimental uncertainties in the apparatus. Quantum theory predicts that systems

can exist in multiple states simultaneously, which is very different from classical mechanics and

our physical intuition. Thus, assigning a single value to a system’s position, momentum, or

energy is ill-defined. This strangeness of quantum theory motivated interpretations based on hid-

den variables that, in principle, would explain the outcomes deterministically. However, Bell’s

work showed that this idea would violate local causality [16–18], and experiments confirmed that

quantum mechanical measurements are incompatible with this interpretation.

The counterintuitive effects in quantum mechanics came from our poor understanding of

the quantum measurement process. The superposition property of quantum states and the con-

sequences of the wave function collapse in Born’s measurement framework motivated debates

about interpretations of quantum mechanics. The Copenhagen and Many Worlds interpretations

are some of the most prominent philosophical explanations of the theory. At the time, even special

relativity clashed with quantum mechanics in the form of the famous Einstein–Podolsky–Rosen
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(EPR) paradox [45]. The central idea of the question raised by EPR is that the wave function col-

lapse could, in principle, communicate information faster than the speed of light, which would

violate one of the fundamental postulates of special relativity.

Although the philosophical aspects of quantum mechanics are still debatable [46], the op-

erational quantum mechanics blindly follows the postulate rules for measurements. Despite our

lack of fundamental understanding, quantum measurements have gotten more attention in recent

decades as the experiments are more precise and reliable than ever. A particular application that

benefits from a deeper understanding of quantum measurements is quantum computing. The goal

is to encode a particular task or calculation into the evolution of a quantum system and get the

results at the end of the computation by measuring the system on a particular basis. The results

are then processed through the measurement statistics.

Following this recent surge in interest in quantum measurements, this thesis aims to discuss

some theoretical aspects of quantum measurements. A particular focus is given to weak and

continuous measurements. The goal is to expand our theoretical framework by studying both

the microscopic models of continuous measurements and applications of feedback. The master

equation approach to the study of quantum measurements can help us understand the statistics

of measurements and derive nontrivial results by looking at the moments of operators over an

ensemble of realizations.

Using a mathematical and physical model written in terms of stochastic processes, I worked

on a series of projects to describe generic quantum systems subject to measurements. The goal

is not only to measure but also to be able to use the measurement outcomes to design protocols

capable of applying feedback to the system. An ensemble master equation was derived in various

forms to allow experimentalists to describe their experiments more realistically and have analyt-
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ical tools capable of accurately predicting results. In the end, a parallel project is discussed, in

which I worked on a real experiment to use information from nondestructive measurements of

cold atoms to estimate physical parameters.

1.2.1 The measurement problem

The measurement problem [47, 48] describes the apparent inconsistency between the su-

perposition principle of quantum mechanics and the classical realism of single outcome measure-

ments. The evolution of quantum systems is described by the Schrödinger equation (see Sec. 1.4),

while Born’s rule describes measurements [11]. The latter is a postulate and cannot be derived

from Schrödinger’s formulation.

The modern interpretation of the measurement problem involves interactions between quan-

tum systems and the surrounding environment (also quantum) [49, 50]. These interactions create

apparently random phases between the states of the quantum system. Only a subset of states

remains when these phases are summed up, creating classical realism. This process is called

“Quantum Darwinism”, and the preferred states are called pointer states [51–53]. Recent work

challenges some of the prevailing ideas on the emergence of classicality [54]. Quantum Darwin-

ism is an active area of research, but it is beyond the scope of this dissertation.

1.3 Quantum feedback

Measurements and information are broad concepts that can be used in multiple ways. A

measurement can be performed to learn about the properties of an unknown system, or the initial

state can be characterized to decide which unitary to apply; a measurement at the end of the
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protocol can be used to check the fidelity of the state preparation; intermediate measurements

can be used to learn about the path of the system’s evolution; or even information can be used

in real time to change the system’s evolution based on the system’s state. The process of using

information about the system to change some aspects of its dynamics is called feedback because

one “feeds” part of the information “back” to the system, closing a loop of information. This

section briefly discusses some of the most important advances in quantum feedback and how the

present work is placed. This section is based on the reviews [55, 56].

We must first define the difference between autonomous and non-autonomous feedback.

This distinction reflects the level of abstraction and modeling one wants to consider when de-

scribing a particular system. In this discussion, non-autonomous feedback is any modification

in the system’s dynamics controlled by an external agent. Such an agent is not modeled and is

considered to follow particular rules defined in the feedback protocol. The details of the im-

plementation of the feedback protocol are not considered, and a clear distinction between the

system and the external agent control is made. On the other hand, an autonomous feedback sys-

tem is a purely physical device capable of implementing a particular protocol based solely on the

equations of motion of its constituents. Examples of autonomous feedback systems include the

Huygens’ governor (1780’s), Feynman’s ratchet-and-pawl, and memory-tape models [56–60]. In

the remainder of the thesis, I focus on non-autonomous feedback with no explicit description or

assumptions about the external agent that measures and controls the (quantum) system.

In classical systems, feedback is typically modeled using dynamical systems. Ordinary

or stochastic systems of differential equations can describe those systems. A linear system can

sometimes be used to model simpler cases. The goal of feedback is, in general, to alter the

dynamics of the time evolution to accomplish a particular goal, e.g. to stabilize the state or to
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make sure it follows a particular trajectory in state space. Common frameworks include frequency

and time domain formulations, with particular emphasis on the Kalman filter [61] — an important

algorithm widely used in control theory to estimate the unknown variable based on statistical

inference.

Classical control systems also employ signal processing in their frameworks. A widely

used model in this context is the PID controller – comprising proportional (P), integral (I), and

derivative (D) gains. Here, the controller refers to a mechanism that determines the control signal

applied to the system. The controller is the effective signal processing that transforms the output

signal (or the error signal for stabilization) into feedback. Each term of the controller provides a

different ingredient to the signal processing and can be used individually or altogether, depending

on the system’s specific dynamics and performance requirements. The proportional gain responds

to the instantaneous error, but can amplify high-frequency noise. The integral gain accumulates

past error, offering long-term correction, but can lead to oscillatory or slow behavior. Finally,

the derivative gain can be used to predict future error and damp oscillations, but it is sensitive to

high-frequency components. In Sec. 4.4, a connection between the signal processing used in the

quantum models and the PID controller is presented.

On the quantum side, feedback has also been developed over the years. The general princi-

ple is similar: one makes measurements on the quantum system and changes its dynamics based

on the outcomes of those measurements. However, measurement generally changes the sys-

tem’s state by creating decoherence on the measurement basis. This backaction divides quantum

feedback protocols into two main categories: stroboscopic measurement and continuous mea-

surements. The former consists of applying projective measurements in the system at specific

instants in time [62–65] and, based on the outcomes, to apply feedback to achieve the desired
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evolution. The latter, which is the focus of this thesis, consists of measuring the system continu-

ously and applying feedback based on the measurement outcome signal [66–69].

Throughout most of this thesis, I focus on studying systems under continuous measure-

ments and feedback. At the core of these discussions is the signal processing of the weak mea-

surement outcome and conversion to a useful signal. Different processes to convert a physical

signal to an experimentally motivated signal are considered and compared in particular toy model

tasks.

1.4 Evolution of quantum systems

In the following sections, I describe the key physical and mathematical concepts necessary

to understand the work presented in this thesis. In this section, I define the notation used to

describe the evolution of quantum systems. It is based on the textbook literature of Refs. [36, 38,

70, 71].

A quantum system is any system that follows the evolution rules of quantum mechanics.

At its core, quantum mechanics studies systems that obey “discretization” (quantization) rules.

These systems can present complex phenomena such as superposition and entanglement. The

quantum theory I focus on in this thesis is non-relativistic and is based on the existence of a state

and a generator of the dynamics (time evolution).

1.4.1 Kets and operators

All physical states in quantum mechanics are vector states in a Hilbert space [71]. These

vectors are called kets and denoted by |ψ⟩. The only requirement for a vector to be a quantum
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state is to have a unitary norm

⟨ψ|ψ⟩ = 1. (1.1)

The vector ⟨ψ| is called bra state and is the dual of |ψ⟩. Using the linear algebra properties of the

Hilbert space, we can always write a quantum state as a linear combination of basis states. What

is interesting is to note is that there are an infinite number of different bases that can be used to

describe a vector space. Consequently, even if the quantum state is written as a single state on

one basis, it will always be in a superposition (linear combination) of states on a different basis:

|ψ⟩ =
∑
n

cn |ϕn⟩ =
∑
n

dn |ξn⟩ . (1.2)

To describe physical quantities (like position, momentum, and energy), one needs to define

an operator — here denoted by Â — that maps ket states to ket states (and bra states to bra states)

Â |α⟩ = |β⟩ ←→ ⟨α| Â† = ⟨β| . (1.3)

The notation Â† denotes the Hermitian conjugate of the operator. For physical quantities, Â = Â†.

Another important property of the physical operators I am interested in is that they all have

an eigendecomposition of the form

Â |α⟩ = α |α⟩ ⇐⇒ Â =
∑
α

α |α⟩⟨α| . (1.4)

Each element in the summation |α⟩⟨α| is an operator. In particular, it is the projection operator

because it projects any state into the particular state |α⟩. Different operators have, in general,
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different eigendecompositions in terms of different bases. This will be important later because if

two operators don’t share a common basis, a quantum state will necessarily be in a superposition

in at least one of those operators.

One way to quantify if two operators share the same basis is to calculate their commutator

[Â, B̂] ≡ ÂB̂ − B̂Â. (1.5)

If the result is the null operator, then Â and B̂ can be diagonalized simultaneously and share a

common basis. An important case is the canonical commutation relation between position and

momentum

[x̂, p̂] = iℏ. (1.6)

An important consequence of this result is that a quantum state cannot be simultaneously diago-

nalized in position and momentum basis.

1.4.2 Born rule

Before introducing the time evolution described by Schrödinger’s equation, I describe the

measurement procedure defined by Born. First, note that a measurement involves a particular

operator. The goal is to find which state of the operator [one of its eigenstates, as defined in

Eq. (1.4)] best represents the quantum state.

The linear combination property of the quantum states tells us that our system can be in

multiple states of the measured operator at the same time. This implies that the Born measurement

protocol has to be a statistical process that maps the quantum state into one of the states of
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the measured operator. This process is random, and each measured operator’s eigenstate has a

particular probability of being selected. This probability, per Born’s postulate, is given by the

absolute value square of the projection of the quantum state into the basis spun by the eigenstates

of the operator

Â =
∑

αn |αn⟩⟨αn| , (1.7)

P (αn) = | ⟨αn|ψ⟩ |2 = ⟨αn|ψ⟩ ⟨ψ|αn⟩ . (1.8)

After the first measurement, subsequent measurements always yield the same result (as-

suming no time evolution happens). To describe this change in the system’s state, we can write

the following mapping

|ψ⟩ → |ψ⟩meas =
|αn⟩⟨αn| |ψ⟩√
| ⟨αn|ψ⟩ |2

= |αn⟩ . (1.9)

The second equality is true because one can redefine the quantum state by absorbing an overall

complex phase.

Using the probability defined in Eq. (1.8), one can calculate any moment of the distribution

of measured outcomes, in particular, the average value of the operator Â is defined as

⟨Â⟩ =
∑
n

αnP (αn) = ⟨ψ|
∑
n

αn |αn⟩⟨αn| |ψ⟩ = ⟨ψ|Â|ψ⟩ . (1.10)

1.4.3 Schrödinger equation

The Schrödinger equation describes the evolution of isolated quantum systems. The gen-

erator of the evolution is the Hamiltonian Ĥ . Let |ψ(t)⟩ denote the quantum state at time t. The
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state of the system obeys

∂t |ψ(t)⟩ =
−i
ℏ
Ĥ |ψ(t)⟩ . (1.11)

In the case of a time-independent Hamiltonian, the solution of Schrödinger equation (1.11)

is

|ψ(t)⟩ = e−itĤ/ℏ |ψ(0)⟩ , (1.12)

where |ψ(0)⟩ denotes the initial condition. One can write the same solution on the energy basis,

i.e. the basis that diagonalizes the Hamiltonian:

Ĥ |ϕn⟩ = En |ϕn⟩ , (1.13)

|ψ(0)⟩ =
∑

cn |ϕn⟩ , (1.14)

|ψ(t)⟩ =
∑

e−itEn/ℏcn |ϕn⟩ . (1.15)

In the energy basis, the quantum system’s state evolves by acquiring complex phases that depend

on the energy of the eigenstate.

1.4.4 Density matrix formalism

The final ingredient to describe the quantum system evolution is introducing the density

matrix formalism. At first, one can define the density matrix operator using

ρ̂ ≡ |ψ⟩⟨ψ| . (1.16)
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Now, the normalization property in Eq. (1.1) translates to a trace property

tr{ρ̂} = 1. (1.17)

So far, this operator describes the state of a pure quantum state. But, one can also describe

a statistical mixture of different quantum states. Imagine the following density matrix

ρ̂ =
∑
n

pn |ψn⟩⟨ψn| ,
∑

pn = 1, pn ≥ 0 ∀n, ⟨ψn|ψn⟩ = 1 ∀n. (1.18)

This operator still satisfies the normalization condition in Eq. (1.17), but now each quantum state

is weighted by a particular probability pn. This general framework can describe quantum states

and probability distributions in the usual statistical sense. The property that can be used to tell if

a density matrix describes a statistical ensemble or a single quantum state is called purity:


tr
{
ρ̂2
}
= 1 : pure state

tr
{
ρ̂2
}
< 1 : statistical mixture

(1.19)

The density matrix version of the Born rule can be written as

ρ̂→ ρ̂meas =

∏
ϕ ρ̂
∏†

ϕ

tr
{∏

ϕ ρ̂
∏†

ϕ

} , (1.20)

where
∏

ϕ = |ϕ⟩⟨ϕ| is a projection operator into the space spanned by the state |ϕ⟩ (it is also

possible to project a state into a multidimensional subspace). As it will be important in Chapter 2,
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one can generalize the Born rule to the case of non-projective measurements:

ρ̂→ ρ̂meas =
M̂zρ̂M̂

†
z

tr
{
M̂ †

zM̂zρ̂
} , (1.21)

that satisfy ∑
z

M̂ †
zM̂z = 1̂ (identity operator). (1.22)

Here, z represents the measurement outcome, and the summation can be replaced by an integral

in the continuous variable case. The set of operators {M̂z} are called Positive Operator-Valued

Measure (POVM) [36, 72].

Similarly, one can modify Schrödinger’s equation to work in the density matrix formalism

∂tρ̂ =
−i
ℏ
[Ĥ, ρ̂]. (1.23)

Using the density matrix, it is possible to generalize the time evolution to account for

dissipation due to the interaction with the environment (in the weak-coupling limit). In this case,

one has the Lindblad master equation [73, 74]

∂tρ̂ =
−i
ℏ
[Ĥ, ρ̂] +

∑
n

λn

(
ĉnρ̂ĉ

†
n −

1

2
ĉ†nĉnρ̂−

1

2
ρ̂ĉ†nĉn

)
. (1.24)

Here, ĉn represents operators that can model transitions assisted by an external environment or

decoherence caused by the interaction with the bath. As the system evolves under the Lindblad

master equation, its purity decreases as the system gets more and more mixed.

15



1.5 Stochastic processes and stochastic calculus

In this section, I introduce the key concepts of classical stochastic processes and stochastic

calculus. Using physics rigor and notation, I discuss the essential stochastic variables used in the

following chapters. This section is based on Refs. [38, 68, 69, 75, 76].

1.5.1 Stochastic process

Stochastic processes are ubiquitous in mathematical fields. They allow us to describe

complicated underlying processes using random variables that obey simple rules. For this dis-

cussion, let’s denote a stochastic process as a collection (or sequence) of random variables by

{Xt} ≡ {X1, . . . , Xn}. These variables can be drawn from arbitrary distributions that may in-

clude correlations. However, for this work, consider that all stochastic random variables are iid

(independent and identically distributed), i.e. all variables Xi have the same ensemble statistics.

The individual random variables Xi can be discrete or continuous. A discrete variable can

only assume one of countable symbols, e.g. Xi = {0, 1, . . . } or Xi = {heads, tails}. To each

possible outcome, one can assign an event probability. This probability is, intuitively, a relative

frequency of a particular outcome when the number of samples is large. The sum of probabilities

of all possible outcomes is normalized

P (X) ≥ 0, (1.25)∑
X

P (X) = 1. (1.26)

For a continuous variable, X is drawn from an uncountable set, typically an interval from
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the real line. In this case, the meaning of the probability of a particular outcome is less clear, and

one usually defines a probability density as the probability of drawing a value in an infinitesimal

interval

P (x ∈ [X,X + dX]) = f(X)dX ≥ 0, (1.27)∫
dxf(x) = 1. (1.28)

Here, f(X) is the probability density normalized similarly to a probability distribution for dis-

crete variables.

Throughout this thesis, I focus on a particular continuous probability distribution, the Gaus-

sian distribution. Variables drawn from this distribution have statistics that are completely de-

scribed by two real parameters: mean and variance. The probability density function for the

Gaussian (or Normal) distribution is given by

f(x) =
1√
2πσ2

e−(x−µ)2/2σ2

. (1.29)

The mean is µ, and the variance (standard deviation) is σ2 (σ).

1.5.2 Wiener increments

Another important random process that is widely used in this thesis is the Wiener incre-

ment. To define it, let’s consider the following Gaussian distribution with zero mean and variance

equal to the time t,

f(W ) =
1√
2πt

e−W 2/2t. (1.30)
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The variablesW (t) drawn from this distribution are called Wiener process. Now consider another

process, called the Wiener increment:

δW ≡ W (t+ δt)−W (t). (1.31)

The variableW (t+δt) have zero mean and variance equal to t+δt. Using the nice properties of a

sum of Gaussian variables, one can verify that the increment of δW is described by the following

probability distribution

f(δW ) =
1√
2πδt

e−δW 2/2δt (1.32)

Consider the sum of the squares of multiple Wiener increments,

SN =
N∑

n=1

δW 2
n , (1.33)

where N = t/δt and δWn denotes the n’th Wiener increment. The average and variance of SN

are, respectively,

⟨SN⟩ = Nδt = t, (1.34)

⟨S2
N⟩ = N · 3δt2 + (N2 −N)δt2, (1.35)

⟨S2
N⟩ − ⟨SN⟩2 = 2Nδt2 =

2t2

N
. (1.36)

In the limit N → ∞ with t fixed, one gets var(SN) → 0, indicating that SN behaves like a
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deterministic variable. In this limit, one can interpret SN in the integration sense

t = SN =

∫ t

0

dt =

∫ t

0

dW 2, (1.37)

from which one gets the result

dW 2 = dt. (1.38)

The integration of the square of Wiener increments behaves like a deterministic variable. A

similar analysis can be done to show that, for independent increments

dWidWj = 0. (1.39)

From now on, the defining properties of the Wiener increments can be summarized as

follows

⟨dWi⟩ = 0, (1.40a)

dWidWj = δijdt. (1.40b)

As will be clearer in the next section, the Wiener increment dW can be intuitively interpreted to

be proportional to
√
dt. Thus, to account for expansions that are correct up to the first order in

dt, one needs to keep track of terms dW up to the second order.
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1.5.3 Stochastic calculus

The previous section hinted that one can intuitively interpret the Wiener increments as the

order of
√
dt. This idea is useful when considering stochastic differential equations (SDE), i.e.,

infinitesimal updates describing the evolution of a particular process that can depend on random

variables.

Let’s consider a physical process that is described by the following SDE:

dX = α(X, t) dt+ β(X, t) dW . (1.41)

Particular cases of Eq. (1.41) are used to describe important processes like the Brownian particle

and the Ornstein-Uhlenbeck (OU) process [75]. The integral solution for this process is given by

X(t) = X0 +

∫ t

0

dt′α[X(t′), t′] +

∫ t

0

dW (t′)β[X(t′), t′], (1.42)

and can be numerically evaluated using the Cauchy-Euler method [75]. Although this solution

looks similar to what one would expect from usual calculus, the stochastic updates make it neces-

sary to modify the chain and the change-of-variables rules to include a second-order effect from

stochastic updates:

d(fg) = (df)g + f(dg) + (df)(dg), (1.43)

df (x) = f ′(X) dX +
1

2
f ′′(X)(dX)2, (1.44)

These are Itô formulas that allow us to operationally work with stochastic differential equations.
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Most of the results presented in this thesis depend on the use of these rules.

1.6 Summary of the chapters

All chapters of this thesis correspond to work performed in collaboration with others; the

people involved in each project are mentioned at the beginning of each chapter. Chapters 2, 3,

and 4 are related to various master equation formulations of continuous feedback in quantum

systems; Refs. [57, 77, 78] deal with similar topics. Chapter 5 discusses a project developed at

the laboratory of Prof. Ian Spielman, whose goal is to use nondestructive measurements to infer

the physical properties of cold atoms using machine learning.

Chapter 2: This introductory chapter discusses the weak measurement formulation using

Gaussian ancilla states. Continuous measurements are defined in the proper limit of weak but fre-

quent measurements, whose outcomes are described by Gaussian white noise. Continuous mea-

surements are used to reproduce the derivation of the Quantum Fokker-Planck Master Equation

(QFPME) found in Ref. [1]. Finally, more general models are derived for continuous stochastic

Schrödinger equations using massive and harmonic interaction ancillas.

Chapter 3: This chapter is based on published work [3]. Here, I apply the QFPME to a

particular analytically solvable toy model. The goal is to use measurement and feedback to cool

and trap a quantum harmonic oscillator. Three protocols are defined, and the QFPME is extended

to allow multiple continuous measurements. It is possible to show that trapping and cooling

are achievable for a suitable choice of parameters, and ground-state cooling is achievable when

measuring position and momentum simultaneously.

Chapter 4: This work is based on unpublished work [5] that extends the results derived in
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the previous chapters. The goal is to generalize the filtering operation introduced in Ref. [1] to

include other forms of signal processing. Using the harmonic oscillator cooling as a toy model,

analytical results are derived and discussed.

Chapter 5: This chapter aims to use machine learning to calculate the temperature and the

number of atoms of a trapped atomic cloud using in-situ measurements. The first part of the chap-

ter presents theoretical and numerical methods to estimate the velocity distribution of a sequence

of expanding atomic clouds. These clouds experience ballistic expansion and are modeled using

a simple convolution rule. Various approaches to calculate the velocity kernel are discussed in

order of increasing complexity. The second part of the chapter describes the experiment, the data

collection, and the training of various machine learning models with increasing complexity. The

results confirm that machine learning can predict the temperature and number of atoms without

using information from the release and expansion of the atoms.

Chapter 6: The final chapter presents this thesis’s outlook and mentions future work direc-

tions.
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Chapter 2: Quantum Fokker-Planck Master Equation

This chapter is based primarily on work done with Björn Annby-Andersson, Debankur

Bhattacharyya, Pharnam Bakhshinezhad, Christopher Jarzynski, Peter Samuelsson, and Patrick

P. Potts, which has been published in the article “Quantum Fokker-Planck Master Equation for

Continuous Feedback Control” [1] (Phys. Rev. Lett. 129, 050401). My contribution to this

published work was mainly in deriving the separation of timescale results presented in the Sup-

plemental Material, which I did together with Debankur Bhattacharyya.

In this chapter, I present a physical motivation to introduce the weak measurement POVMs

used in deriving the results of Ref. [1]. More general forms of weak measurements are also dis-

cussed, particularly a model that can be used to derive the filtered signal from a microscopically

starting point.

2.1 Overview

In classical mechanics, measurements are typically taken for granted, and all the proper-

ties of the system (like position, momentum, and energy) can be known simultaneously and with

absolute precision (in principle). However, in quantum mechanics, systems can be in superpo-

sition states, and different operators may not be measured simultaneously. These features cause

measurement in quantum mechanics to be a probabilistic process.
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The evolution of an isolated quantum state is deterministic, and it is described by the unitary

evolution generated by the Hamiltonian (in the Schrödinger picture [71] description). However, a

typical quantum state is described by a superposition of different eigenstates of physical operators

(like position, momentum, and energy). This superposition creates a situation where the state’s

property, like its energy, is not well defined because it has different values simultaneously. In

these situations, measurement is not a trivial process in quantum mechanics.

The black box approach to quantum measurement is given by Born’s rule [11], which

gives us the statistical interpretation of quantum mechanics [38, 70]. This rule tells us that a

measurement has many possible outcomes, and the probability of each outcome is related to the

absolute value of the quantum state with respect to a particular eigenstate of the operator being

measured. This measurement process is sometimes called “quantum state collapse” and is usually

thought to be instantaneous, described in Sec. 1.4.

Generalized measurement schemes can be studied using completely positive and trace pre-

serving (CPTP) maps, Kraus operators and POVMs [36, 38, 72, 79]. These measurement opera-

tors and schemes are typically derived from microscopical models in which two quantum systems

— a primary system, and an auxiliary system— interact, and a projective measurement is per-

formed on the auxiliary (or pointer) system. In this context, weak measurements were introduced

to represent measurements that don’t cause the primary system‘s quantum state collapse, and a

smaller disturbance is imprinted into that system.

This chapter aims to introduce weak measurements using a physically intuitive model and

then generalize to more sophisticated scenarios. Weak measurements are also the foundation of

continuous measurement and feedback [68, 80–83]. The goal is to combine all these ingredients

and describe the steps of the derivation of the Quantum Fokker-Planck Master Equation [1].
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2.2 Weak measurements

The simplest and most commonly used interaction model for a weak measurement is the

impulsive interaction model [68, 84]. This model can be discussed in the context of the well-

known Stern-Gerlach (SG) experiment [71, 72, 85]. I will describe this model in detail here.

Consider a particle with two degrees of freedom: its position z and its spin degrees of

freedom (up and down). Suppose the initial wavefunction of the particle can be described by

|Ψ0⟩ = |ψz⟩ |ϕs⟩ , (2.1)

where |ψz⟩ describes the wavefunction in position (z) degree of freedom and |ϕs⟩ describes the

spin state of the particle. I omit the tensor product notation between the different degrees of

freedom for simplicity. Also, consider the wavefunction in the momentum degree of freedom to

be a Gaussian:

⟨p|ψz⟩ = ψz(p) =

(
k

π

)1/4

e−k(p−pz)2/2. (2.2)

Here, 1/k controls the momentum variance of the wavefunction, and pz is the average momentum

in the z direction. The state of the spin is arbitrary and denoted by:

|ϕs⟩ = α |↑⟩+ β |↓⟩ . (2.3)

Our goal is to make a measurement to characterize this arbitrary state. The measurement will be

performed in the momentum degrees of freedom. Since the initial state for |ψz⟩ is Gaussian, I
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will refer to momentum as a Gaussian auxiliary system.

Figure 2.1: Schematics to represent the simplistic description of the SG experiment. A particle
in a superposition state of the spin interacts with the magnetic field. The vertical displacement is
proportional to the strength of the interaction and the spin. The detector measures two disjoint
distributions representing the spin up and down.

The particle is in the presence of a magnetic field, and they interact due to the particle’s

magnetic moment (the spin). See Fig. 2.1. This interaction can be modeled by the interaction

Hamiltonian

ĤI = −σ⃗ · B⃗, (2.4)

where σ⃗ is the spin operator that acts on the spin degrees of freedom and B⃗ is the magnetic field.

The magnetic field is created with a constant gradient in the z direction:

B⃗ = κz⃗, κ = constant. (2.5)

From Maxwell’s equations, the magnetic field is divergence-free, ∇⃗ · B⃗ = 0. Thus, the magnetic

field in Eq. (2.5) is not valid. However, the discussion here focuses on the evolution of the

wavefunction and measurement, not the exact physics of the SG experiment.

26



The total Hamiltonian of this system is given by

Ĥ =
p̂2

2m
− σ⃗ · B⃗, (2.6)

where p̂ is the momentum operator of the particle. However, for the present discussion, it is

instructive to disconsider the kinetic energy and focus on the interaction Hamiltonian. This sim-

plification can also be thought of as the limit where the particle’s mass is very large m→∞. In

the next section, I will describe in detail the effect of finite inertia in this model.

In this approximation, the evolution of the system can be solved directly using the unitary

operator for the interaction Hamiltonian in Eq. (2.4) (ℏ = 1):

Û(t) = e−iĤt = eiκσz ẑt = eiκẑt |↑⟩⟨↑|+ e−iκẑt |↓⟩⟨↓| . (2.7)

The time evolution operator behaves differently for each value of the spin component. This

behavior causes the change in the wavefunction to be coupled to the spin degrees of freedom.

Thus, by measuring the wavefunction we can get information about the spin. The state of the

system at time t is

|Ψt⟩ = Û(t) |Ψ0⟩ =
∫

dp |p⟩ [αψz(p− κt) |↑⟩+ βψz(p+ κt) |↓⟩] . (2.8)

Note that the wavefunction in momentum space gets displaced by an amount equal to κt, which

is the same term in the exponent of Eq. (2.4).

Once the system interacts with the magnetic field and momentum and spin are coupled, we

can measure momentum to get information about the system’s state. Using Born’s rule, we can
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Figure 2.2: Probability distribution (black dashed curve) of the measurement outcome in
Eq. (2.11) for α = β and pz = 0. The blue and orange curves correspond to the displace-
ment of individual states |↑⟩ and |↓⟩— see Fig. 2.1. A small momentum variance makes it easier
to distinguish the spin in the post-measurement state. If the momentum variance is large, the
distribution resembles a simple Gaussian distribution.

calculate the state of the entire system if the momentum gets measured to be in state |p⟩:

|Ψt⟩meas =
|p⟩ ⟨p|Ψt⟩√
⟨Ψt|p⟩ ⟨p|Ψt⟩

, (2.9)

|Ψt⟩meas = |p⟩
[αψz(p− κt) |↑⟩+ βψz(p+ κt) |↓⟩]√
|αψz(p− κt)|2 + |βψz(p+ κt)|2

. (2.10)

The probability distribution of the outcome p is given by

P (p) = |αψz(p− κt)|2 + |βψz(p+ κt)|2. (2.11)

The framework described here is different from the usual SG experiment. For simplicity, I

measure the system in the momentum basis, but a similar discussion can be made by measuring

on a position basis (as in the original experiment). One needs to account for the time necessary

for the position to be affected by the change in momentum. A related discussion is presented in
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Sec. 2.6, where I compare position and momentum measurements.

The measurement outcome distribution is a weighted sum of two Gaussian distributions.

The probability of the spin state gives the weights. Figure 2.2 shows the momentum distribution

for α = β and pz = 0. It is intuitive to see that for

k

κt
≫ 1, (2.12)

the measurement is strong, and the post-selection state given by Eq. (2.10) collapses the state

into one of the eigenstates of σ̂z. In the other limit (k/κt ≪ 1), the measurement is weak, the

system’s state is almost unaffected, and the distribution of p is close to a single Gaussian.

As will be more apparent in the next section, Eq. (2.10) is equivalent to a POVM. One

can start the model directly using the POVM. Still, the previous construction can give a physical

meaning/intuition as to why a particular model can describe a real-world process.

2.3 Continuous measurement and Belavkin equation

This section focuses on deriving the Belavkin equation [66, 67, 69, 84, 86–88], which is

the stochastic master equation for continuous measured systems, and it is based on the review

article [69]. The setup is similar to the previous section: the system is measured on the basis of

a generic operator Â =
∑

a ξa |ξa⟩⟨ξa| using a Gaussian auxiliary system (similar to the previous

section). The post-selection on the auxiliary system is equivalent to the Gaussian POVM (see

Sec. 1.4.4):

M̂(z) =

(
2λδt

π

)1/4

e−λδt(z−Â)2 . (2.13)
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The parameter λ controls the strength of the measurement, δt is the interaction duration, and z

is the measurement outcome. The measurement is fully described by the post-measurement state

ρ̂meas and the probability distribution of the outcome variable z:

ρ̂meas =
M̂(z)ρ̂M̂ †(z)

Tr
{
M̂(z)ρ̂M̂ †(z)

} , (2.14)

P (z) =

(
2λδt

π

)1/2∑
a

e−2λδt(z−ξa)2 ⟨ξa| ρ̂ |ξa⟩ . (2.15)

Now note that the first two moments of the measurement outcome z can be calculated

directly from Eq. (2.15):

⟨zn⟩ =
∫

dz znP (z) (2.16)

⟨z⟩ = ⟨Â⟩ = Tr
{
Âρ̂
}

(2.17)

⟨z2⟩ = ⟨Â2⟩+ 1

4λδt
(2.18)

In the limit of a weak measurement, δt → 0, the distribution in Eq. (2.15) can be approximated

by a single Gaussian distribution centered at the average value of the measured operator [69]

P (z) =

(
2λδt

π

)1/2

e−2λδt(z−⟨Â⟩)2 . (2.19)

Consequently, the variable z can be written as a Gaussian variable of the form

z = ⟨Â⟩+ δW√
4λδt

, (2.20)
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where δW is a Gaussian variable satisfying ⟨δW ⟩ = 0 and var(δW ) = δt. This is, so far, a single

weak measurement; to construct a continuous measurement, one can consider the consecutive

interactions of the quantum system with a Gaussian auxiliary ancilla [69]. For simplicity, the

state of the auxiliary system is considered to be reset before every new interaction, which is a

standard procedure in the study of collision or repeated interaction models [89–92].

The continuous measurement has a finite effect in the limit where small time steps become

infinitesimal δt → dt and the auxiliary system is reset every time step dt (for the remainder, δt

is used for small time steps and dt is used for infinitesimal steps). In this limit, the Gaussian

variable δW → dW is mapped to a Weiner increment, which satisfies Eq. (1.40). Because the

stochastic variable is effectively at the order of dW ∼ dt1/2, one needs to keep track of dW up to

second order and dt up to first order to account for the stochastic effects in the system correctly

(see Sec. 1.5.2).

To account for the underlying time evolution and the continuous measurement, the density

matrix is updated using the following equation:

ρ̂(t+ dt) = eLdt
M̂(z)ρ̂M̂ †(z)

Tr
{
M̂(z)ρ̂M̂ †(z)

} , (2.21)

where L is the Liouville operator that evolves the quantum system in time. The master equation

associated with the infinitesimal evolution of Eq. (2.21) can be calculated after expanding it up

to first order in dt (second order in dW ). The Belavkin equation gives the stochastic master

equation that describes a quantum system under continuous measurement [69, 88]:

dρ̂ = Lρ̂ dt+ λ dtD[Â]ρ̂+
√
λ dW

{
Â− ⟨Â⟩, ρ̂

}
. (2.22)
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Here D[ĉ]ρ̂ = ĉρ̂ĉ† − 1
2
{ĉ†ĉ, ρ̂} is the superoperator that represents the backaction induced in

the system by the continuous measurement, and {·} is the anti-commutator. The third term in

Eq. (2.22) represents the stochastic update of the density matrix based on the knowledge obtained

from the measurement outcome. It contains a non-linear term that preserves the density matrix’s

trace and purity (for a unitary Liouville operator).

2.4 Quantum Fokker-Planck Master Equation

As it will be important later, in this section, I reproduce the derivation of the Quantum

Fokker-Planck Master Equation (QFPME) [1, 3, 77] using the stochastic calculus method de-

scribed in the Supplemental Material of Ref. [1]. The QFPME describes the ensemble evolution

of the joint quantum system and the filtered measured outcome in a continuously monitored sys-

tem modeled by the Gaussian weak measurement described in the previous section.

The starting point of this section is the Belavkin Eq. (2.22) obtained using Gaussian weak

measurements. Coupled with the evolution of the quantum system, one has access to the classical

noisy signal z(t) described by Eq. (2.20). Based on this signal, it is possible to apply feedback

by changing the Hamiltonian using the measurement outcome [80]. However, one is limited to

linear feedback of the form

Ĥ(z) = Ĥ0 + zV̂ (2.23)

because the signal z(t) has ill-defined higher moments. Motivated by this limitation and the fact

that real-world experiments cannot measure changes with infinite speed, the authors in Ref. [1]

introduced a filtered version of the classical signal to model the finite bandwidth of the experi-
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ment:

D(t) = γ

∫ t

−∞
dt′ eγ(t−t′)z(t′). (2.24)

Here, γ represents the detector bandwidth, and it is intuitively related to the delay (or lag)

timescale td ∼ γ−1 necessary for the experiment to measure changes in the system.

The signal z(t) is not continuous and nowhere differentiable because it is defined in terms

of a Gaussian white noise in Eq. (2.20). Conversely, the smoother signal D(t) is continuous and

evolves similarly to an Ornstein–Uhlenbeck (OU) process [75]:

dD = γ(⟨Â⟩ −D) dt+
γ√
4λ

dW . (2.25)

The first term generates an exponential decay towards the expected value of the measured opera-

tor, while the second term adds noise to the evolution. The diffusive constant of the OU dynamics

is given by γ2/8λ.

Now, it is possible to apply general feedback, here described as a protocol (or a function)

Ĥ(D) based on the filtered measured outcome. The following coupled stochastic equations de-

scribe the joint evolution of the quantum system and the measured outcome:

dρ̂ = − i
ℏ

[
Ĥ(D), ρ̂

]
dt+ λ dtD[Â]ρ̂+

√
λ dW

{
Â− ⟨Â⟩, ρ̂

}
, (2.26)

dD = γ(⟨Â⟩ −D) dt+
γ√
4λ

dW . (2.27)

The evolution of this system of equations is non-deterministic, as it depends on the particular

realizations of the stochastic Wiener increments. To work with a deterministic description, rather

than a stochastic one, the authors of Ref. [1] introduced an ensemble picture by defining a new
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object

ρ̂(D′, t) ≡ EW [ρ̂(t)δ(D′ −D(t))], (2.28)

where EW [·] represents the stochastic average over the noise. This quantity represents a joint

“distribution” as it contains information on the quantum state and the distribution of measurement

outcomes consistent with the particular measured value D(t) at time t. In Eq. (2.28), we average

over all quantum states compatible with the measured outcome D(t) at time t. This reflects

that our only source of information is the outcome that one measures and not the quantum state

directly.

The evolution of ρ̂(D′, t) can be solved by taking the derivative of both sides of Eq. (2.28)

and using the properties of stochastic calculus discussed in Sec. 1.5.3. The final step is to use the

following identities that are valid for a general smooth function f(D′) [68]:

∂

∂D′
δ(D′ −D) = − ∂

∂D
δ(D′ −D), (2.29a)[

∂

∂D′
δ(D′ −D)

]
f(D′) =

∂

∂D′
[δ(D′ −D)f(D)] . (2.29b)

Combining these ingredients, we obtain the QFPME for a single measurement [1]:

∂tρ̂(D, t) =
−i
ℏ
[Ĥ(D), ρ̂(D, t)]+λD[Â]ρ̂(D, t)− γ

2
∂D{Â−D, ρ̂(D, t)}+

γ2

8λ
∂2Dρ̂(D, t) (2.30)

The first term corresponds to unitary evolution with arbitrary feedback protocol Ĥ(D); the second

is the measurement backaction, which causes decoherence on the basis of the measured operator

[see Eq. (1.24)]. The last two terms form a Fokker-Planck-like equation, where the third term is a

drift of the measured operator towards the operator being measured, and the final term represents
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the diffusion in the measurement outcome space. See [1] for a detailed discussion. A classical

derivation of Eq. (2.30) using Bayesian inference is found in Ref. [57].

In the next two sections, I introduce variations of the weak measurement model. The aim

is to be able to model more realistic experimental situations and gain intuition on the applications

of weak measurements and continuous measurements.

2.5 Inertial model for a weak measurement

The starting point for the Belavkin equation and the QFPME is the POVM derived from

the linear interaction Hamiltonian in Sec. 2.2. In this section, I will re-derive the weak measure-

ment POVM starting from an “inertial” model that considers the initial pointer’s mass (inertia).

After correctly choosing the physical parameters, one can rederive the Belavkin equation with a

correction that depends on the pointer’s mass.

One can use the same physical model as in Sec. (2.2) but consider the kinetic energy. The

setup is similar; we have two degrees of freedom: a spatial system described by position and

momentum and a finite-dimensional internal degree of freedom. The total Hamiltonian for this

model is

Ĥ =
p̂2

2m
− kx̂Â. (2.31)

The operators x̂ and p̂ are position and momentum; k controls the intensity of the interaction; and

Â =
∑

a ξa |ξa⟩⟨ξa| is the operator we are trying to measure. The initial joint quantum state is

assumed to be in a product state:

|Ψ0⟩ = |α⟩ |ϕa⟩ . (2.32)
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The state |α⟩ refers to the auxiliary system that will be measured (pointer). The pointer is assumed

to be in a Gaussian initial state in the momentum representation

⟨p|α⟩ =
(
2λ

π

)
e−λp2 . (2.33)

The state |ϕa⟩ is a generic state of the system that one is interested in measuring.

To solve for the time evolution of the system, we will use the Zassenhaus formula of the

exponential operator algebra [93]

eX̂+Ŷ = eX̂eŶ e−
1
2
[X̂,Ŷ ]e

1
6
(2[Ŷ ,[X̂,Ŷ ]]+[X̂,[X̂,Ŷ ]]), (2.34)

where X̂ and Ŷ are well-behaved operators. This formula, in general, contains additional terms,

but in the case of X̂ ∝ p̂2 and Ŷ ∝ x̂, these terms vanish. Using Eq. (2.34), the time unitary

operator can be written as (ℏ = 1):

e−iδtĤI = e−iδt p̂2

2m eiδtkx̂Âei(δt)
2kÂp̂/2mei(δt)

3k2Â2/m. (2.35)

Here, we choose the interaction time to be small, δt → 0, because we want to define a continu-

ous limit where the interaction (and measurement) is repeated very often. Once the system has

interacted with the ancilla (pointer) state, one measures the pointer’s momentum. This operation
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defines the POVM of the weak measurement:

|Ψt⟩ = e−iδtĤI |α⟩ |ϕa⟩ , (2.36)

⟨p|Ψt⟩meas =
∑
a

⟨p| e−iδt p̂2

2m eiδtkx̂ξaei(δt)
2kξap̂/2me(δt)

3k2ξ2a/m |ξa⟩ |α⟩ ⟨ξa|ϕa⟩ , (2.37)

|ϕa⟩meas =
M̂(p) |ϕa⟩√

⟨ϕa| M̂ †(p)M̂(p) |ϕa⟩
, (2.38)

M̂(p) =
∑
a

⟨p| e−iδt p̂2

2m eiδtkx̂ξaei(δt)
2kξap̂/2me(δt)

3k2ξ2a/m |α⟩ |ξa⟩⟨ξa| . (2.39)

Using Eq. (2.33), the measurement POVM can be written as

M̂(p) =

(
2λ

π

)1/4

e−iδtp2/2meiδt
2kÂ(p−δtkÂ)/2me

i
3
δt3k2Â2/me−λ(p−kδtÂ)2 . (2.40)

To make the measurement weak and also have a finite effect as one collects multiple POVMs

at every time step δt, one needs to consider the following conditions [note that λ is defined by

Eq. (2.33)]:

k → 1

δt
, λ→ λδt. (2.41)

Thus, the POVM of this inertial weak measurement model can be written as:

M̂(p) =

(
2λ

π

)1/4

eiδtÂ(p−Â)/2me
i
3
δtÂ2/me−λδt(p−Â)2 . (2.42)

Note that we can neglect the phase factor related to the kinetic energy because that only adds a

complex phase to the quantum state.

37



Under these assumptions, the probability distribution of the measured outcome

P (p) = ⟨ϕa| M̂ †(p)M̂(p) |ϕa⟩ (2.43)

is approximately Gaussian. The measurement outcome can be described as a white Gaussian

noise of the form

p = ⟨Â⟩+ δW√
4λδt

, (2.44)

similar to Eq. (2.20). Finally, to derive the equivalent of a Belavkin equation for the inertial

model, let’s write the update of a generic quantum state by the POVM

ρ̂t+δt = e−iδtĤ M̂(p)ρ̂tM̂
†(p)

Tr
{
M̂(p)ρ̂tM̂ †(p)

}eiδtĤ . (2.45)

Here, Ĥ denotes the underlying quantum dynamics over the system of interest. Expanding all

terms up to first order in δt and second order in δW (because δW 2 = δt), we get:

dρ̂ =− i

[
Ĥ − Â

4m

(
Â

3
+ ⟨Â⟩+ 1√

λ

dW

dt

)
, ρ̂

]
dt+(

λ+
1

16λm2

)
D[Â]ρ̂ dt+

√
λ{Â− ⟨Â⟩, ρ̂} dW .

(2.46)

In the limit m → ∞, we recover Eq. (2.22), which was derived in Sec. 2.3 starting from a

model without kinetic energy. A pointer with infinite mass doesn’t feel any change in momentum

caused by the interaction with the quantum system. It is interesting to note the contribution

of the finite mass to the Hamiltonian and the backaction. The Hamiltonian gets a quadratic, a

nonlinear, and a stochastic term in the operator Â. In particular, the stochastic term enters as
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a white noise contribution, similar to the linear feedback quantum master equation [80]. The

backaction is increased by a term that is proportional to 1/λ. This fact creates a situation where

neither small nor big values of λ decrease the backaction as in the usual Belavkin equation, but

rather an intermediate value.

2.6 Harmonic model for weak measurement

Similar to the setup in Sec. 2.5, in this section, I will re-derive the weak measurement

POVM starting from a “harmonic” model with a bounded Hamiltonian. The measurement signal

evolves similarly to an OU particle without the assumption of low-pass filtering introduced in

Eq. (2.24).

The starting point for this model is to consider a system with two degrees of freedom: a

spatial degree described by position and momentum and a finite-dimensional internal degree of

freedom. The interaction Hamiltonian for this model is

ĤI =
p̂2

2m
+
mΩ2

2
(x̂− Â)2. (2.47)

The operators x̂ and p̂ are position and momentum; Ω is the frequency of the interaction harmonic

oscillator; and Â =
∑

a ξa |ξa⟩⟨ξa| is the operator we are trying to measure, that acts in the internal

degrees of freedom. The initial joint quantum state is assumed to be in a product state:

|Ψ0⟩ = |α⟩ |ϕa⟩ , (2.48)

where |α⟩ describes the wavefunction auxiliary system to be measured and |ϕa⟩ describes the
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internal state of the particle. The state |ϕa⟩ is arbitrary, and we aim to find the value corresponding

to the measure of operator Â. To solve for the time evolution, we need to calculate how the unitary

time operator acts on the initial wavefunction

|Ψt⟩ = e−iĤI t/ℏ |Ψ0⟩ =
∑
a

e−iĤat/ℏ |α⟩ |ξa⟩ ⟨ξa|ϕa⟩ , (2.49)

where we define the “component” of the total Hamiltonian that lives in a particular eigenstate of

the operator Â:

Ĥa =
p̂2

2m
+
mΩ2

2
(x̂− ξa)2. (2.50)

Once we define the Hamiltonian (2.50), the evolution of the wavefunction in Eq. (2.49) reduces

to solving the time evolution of a displaced quantum harmonic oscillator. In addition, let’s define

the “bare” Hamiltonian

Ĥ0 =
p̂2

2m
+
mΩ2

2
x̂2, (2.51)

and the canonical lowering (raising) â (â†) operator:

â =

√
mΩ

2ℏ

(
x̂+

i

mΩ
p̂

)
. (2.52)

To solve for the evolution of a displaced quantum harmonic oscillator, I use the following
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properties of the displacement operator:

D̂(α) |0⟩ = |α⟩ , (2.53)

D̂†(α)D̂(α) = D̂(α)D̂†(α) = 1̂, (2.54)

D̂†(α) = D̂(−α), (2.55)

D̂(α)âD̂†(α) = â− α, (2.56)

D̂(α)â†D̂†(α) = â† − α∗, (2.57)

D̂(α)D̂(β) = e(αβ
∗−α∗β)/2D̂(α + β), (2.58)

and the evolution of a coherent state by the bare Hamiltonian

e−itĤ0/ℏ |α⟩ = e−iΩt/2
∣∣αe−iΩt

〉
. (2.59)

First, note that we can displace the evolution of the bare Hamiltonian (2.51) into the evolu-

tion of any component Hamiltonian (2.50) using Eqs. (2.54-2.57):

D̂

(√
mΩ

2ℏ
ξa

)
e−itĤ0/ℏD̂†

(√
mΩ

2ℏ
ξa

)
= e−itĤa/ℏ. (2.60)

The next step is to consider that the initial state of the auxiliary system is a coherent (displaced)

state in Eq. (2.48):

|α⟩ =

∣∣∣∣∣
√
mΩ

2ℏ
y

〉
. (2.61)

Using these equations, one can calculate the evolution of the initial coherent state by the
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component Hamiltonian:

e−itĤa/ℏ

∣∣∣∣∣
√
mΩ

2ℏ
y

〉
= D̂

(√
mΩ

2ℏ
ξa

)
e−itĤ0/ℏD̂†

(√
mΩ

2ℏ
ξa

)
D̂

(√
mΩ

2ℏ
y

)
|0⟩ (2.62)

= D̂

(√
mΩ

2ℏ
ξa

)
e−itĤ0/ℏ

∣∣∣∣∣
√
mΩ

2ℏ
(y − ξa)

〉
(2.63)

= D̂

(√
mΩ

2ℏ
ξa

)
e−iΩt/2

∣∣∣∣∣
√
mΩ

2ℏ
(y − ξa)e−iΩt

〉
(2.64)

= e−iΩt/2ei
mΩ
2ℏ ξa(y−ξa) sinΩt

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (y − ξa)e−iΩt

]〉
(2.65)

Finally, one can express the final state of the total quantum system after the interaction as

|Ψt⟩ = e−iΩt/2
∑
a

ei
mΩ
2ℏ ξa(y−ξa) sinΩt

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (y − ξa)e−iΩt

]〉
|ξa⟩ ⟨ξa|ϕa⟩ . (2.66)

Once the state has evolved, one can apply a position or a momentum measurement. I’ll

discuss both cases in detail.

2.6.1 Momentum measurement

Let’s consider measurement in the momentum basis. The post-measurement state and the

probability distribution of the measurement outcomes are

⟨p|Ψt⟩meas =
e−iΩt/2

∑
a e

imΩ
2ℏ ξa(y−ξa) sinΩt

〈
p
∣∣∣√mΩ

2ℏ

[
ξa + (y − ξa)e−iΩt

]〉
|ξa⟩ ⟨ξa|ϕa⟩√

P (p)
, (2.67)

P (p) =
∑
a

∣∣∣∣∣
〈
p

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (y − ξa)e−iΩt

]〉∣∣∣∣∣
2

|⟨ξa|ϕa⟩|2. (2.68)
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The coherent states |α⟩ have Gaussian profiles in position and momentum space; thus, the overall

probability distribution in Eq. (2.68) is a sum of Gaussians with relative probability given by the

projection of the internal state into the eigenstates of the operator Â.

The average momentum and momentum variance of a single coherent state are given by:

⟨p̂⟩α = ⟨α| p̂ |α⟩ =
√
2ℏmΩ Im(α), (2.69)

σp,α =

√
⟨α| p̂2 |α⟩ − ⟨α| p̂ |α⟩2 =

√
ℏmΩ

2
. (2.70)

Thus, the average value and variance of the measurement outcome p are given by:

⟨p⟩ =
∫

dp xP (p) = mΩ(⟨Â⟩ − y) sinΩt, (2.71)

σ2
p =

∫
dp (p− ⟨p⟩)2P (p) = ℏmΩ

2
+ σ2

Am
2Ω2 sin2Ωt (2.72)

Now, assume the interaction time is small t → δt. In this condition, the average value and

measurement variance read:

⟨p⟩ = (⟨Â⟩ − y)mΩ2δt+O(δt3), (2.73)

σ2
p =

ℏmΩ

2
+O(δt2). (2.74)

Because in the limit δt → 0, the variance of the Gaussians is much larger than the separation

between them, we can consider that the distribution in Eq. (2.68) coalesces into a single Gaussian

distribution whose first two moments are given by Eqs. (2.73,2.74). This approximation in the
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probability distribution allow us to write the measurement outcome as a stochastic variable:

ps = (⟨Â⟩ − y)mΩ2δt+

√
ℏmΩ

2
W. (2.75)

Here, W ∼ N (0, 1) is a Gaussian random variable distributed with zero mean and unitary vari-

ance. Despite the interaction time being small, consider that the stiffness of the harmonic poten-

tial is large, such that the product

Ω2δt ≡ γ ⇒ Ω =

√
γ

δt
(2.76)

is finite. The stochastic variable can be rewritten as

ps = (⟨Â⟩ − y)mγ +

(
ℏ2m2

4
γδt

)1/4
δW

δt
, (2.77)

where δW ∼ N (0, δt) is a Wiener increment.

The measurement scheme I have introduced here is meant to model a continuous process,

meaning that it will be applied to the quantum system every time step δt. In a given time t,

consider the auxiliary system is initialized to the state in Eq. (2.48) with a particular value yt that

can be controlled.

The value of the measured momentum in Eq. (2.77) is similar to the momentum of a Brow-

nian particle being “kicked” by the surrounding environment. Consider that the experimentalist

updates the value of the parameter yt to mimic the “position” of the auxiliary system

yt+1 = yt +
ps
m
δt. (2.78)
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The signal yt evolves similarly to an OU particle

yt+1 − yt = dy = γ(⟨Â⟩ − yt)δt+
γ√
4λ
δW, (2.79)

where we define (
ℏ2

4m2
γδt

)1/4

≡ γ√
4λ

⇒ λ =
m

2ℏ

√
γ3

δt
. (2.80)

to control the amount of noise in the system. Note the similarity with Eq. (2.25) without the

explicit assumption of a low-pass filter on the weak measurement signal.

We can rewrite the evolution of the quantum state in Eq. (2.67) in terms of the new vari-

ables. Let’s redefine the variables m,Ω in terms of λ, γ, δt:

Ω =

√
γ

δt
,

m

ℏ
= 2λ

√
δt

γ3
. (2.81)

Then, the post-measurement state in Eq. (2.67) is equivalent to the action of the following POVM

into the generic quantum state ρ:

M̂(p|yt) = e−iΩt/2
∑
a

ei
mΩ
2ℏ ξa(yt−ξa) sinΩδt

〈
p

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (yt − ξa)e−iΩδt

]〉
|ξa⟩⟨ξa| , (2.82)

ρ̂t+1 = eLδt
M̂(p|yt)ρ̂tM̂ †(p|yt)

Tr
{
M̂(p|yt)ρ̂tM̂ †(p|yt)

} . (2.83)

To calculate the exact form of the POVM, it is useful to consider the coherent state in momentum
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representation:

〈
p

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (yt − ξa)e−iΩδt

]〉
=

(
1

πℏmΩ

)1/4

e−
ip⟨x⟩

ℏ e
i⟨p⟩⟨x⟩

2ℏ e−
1

2ℏmΩ
(p−⟨p⟩)2 , (2.84)

⟨x⟩ =
√

2ℏ
mΩ

Re

(√
mΩ

2ℏ
[
ξa + (yt − ξa)e−iΩδt

])
= yt + (ξa − yt)γδt/2, (2.85)

⟨p⟩ =
√

ℏmΩ

2
Im

(√
mΩ

2ℏ
[
ξa + (yt − ξa)e−iΩδt

])
= mγ(ξa − yt). (2.86)

The POVM can be written as:

M̂(p|yt) =
(

1

πℏmΩ

)1/4

e−
2iλ
γ

Â(Â−yt)
√
γδte

− 2iλ
γ

√
γδt(yt+(Â−yt)γδt/2)

[
(⟨Â⟩−yt)+

1√
4λ

δW
δt

−(Â−yt)/2
]

×e−λδt
[
(⟨Â⟩−Â)+ 1√

4λ

δW
δt

]2
,

(2.87)

where I used the fact that p is given by Eq. (2.77). Note that the phase terms in Eq. (2.87) have a

term that depends on
√
δt, which would lead to inconsistencies in the master equation expansion

of the POVM. One possible solution would be to consider that the protocol works by applying a

unitary evolution to cancel out the phase factor present in the definition of the coherent state.

In the end, the POVM that evolves the quantum state is written as:

M̂(p|yt)→
(

2λ

πγ2δt

)1/4

e
−λδt

[
(⟨Â⟩−Â)+ 1√

4λ

δW
δt

]2
. (2.88)

Equation (2.88) is equivalent to use Eqs. (2.13) and (2.20). The update of the quantum state based

on the POVM (2.88) leads to the Belavkin equation (2.22) [1, 69]. Then, combining the Belavkin

equation with the continuous signal in Eq. (2.78), one can derive the QFPME (2.30) using the
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stochastic steps of Ref. [1], reproduced in Sec. 2.4.

2.6.2 Position measurement

A similar filtered signal can be derived using the harmonic model if one measures the total

system in the position basis rather than momentum. The steps are similar: once the state has

evolved, one applies a measurement on the position basis. The post-measurement state and the

probability distribution of the measurement outcomes are

⟨x|Ψt⟩meas =
e−iΩt/2

∑
a e

imΩ
2ℏ ξa(y−ξa) sinΩt

〈
x
∣∣∣√mΩ

2ℏ

[
ξa + (y − ξa)e−iΩt

]〉
|ξa⟩ ⟨ξa|ϕa⟩√

P (x)
,

(2.89)

P (x) =
∑
a

∣∣∣∣∣
〈
x

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (y − ξa)e−iΩt

]〉∣∣∣∣∣
2

|⟨ξa|ϕa⟩|2. (2.90)

The average position and position variance of a single coherent state are given by:

⟨x̂⟩α = ⟨α| x̂ |α⟩ =
√

2ℏ
mΩ

Re(α), (2.91)

σx,α =

√
⟨α| x̂2 |α⟩ − ⟨α| x̂ |α⟩2 =

√
ℏ

2mΩ
. (2.92)

Thus, the average value and variance of the measurement outcome x are given by:

⟨x⟩ =
∫

dx xP (x) = ⟨Â⟩+ (y − ⟨Â⟩) cosΩt, (2.93)

σ2
x =

∫
dx (x− ⟨x⟩)2P (x) = ℏ

2mΩ
+ σ2

A(1− cosΩt)2 (2.94)

Now, consider that the interaction time is small t→ δt. In this situation, the average value
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and measurement variance read:

⟨x⟩ = y + (⟨Â⟩ − y)Ω
2(δt)2

2
+O(δt4), (2.95)

σ2
x =

ℏ
2mΩ

+O(δt4). (2.96)

Because in the limit δt → 0, the variance of the Gaussians is much larger than the separation

between them, we can consider that the distribution in Eq. (2.90) coalesces into a single Gaussian

distribution whose first two moments are given by Eqs. (2.95,2.96). This approximation in the

probability distribution allows us to write the measurement outcome as a stochastic variable:

xs = y + (⟨Â⟩ − y)Ω
2δt2

2
+

√
ℏ

2mΩ
W. (2.97)

Despite the interaction time being small, consider that the stiffness of the harmonic potential is

large, such that the product

Ω2δt/2 ≡ γ ⇒ Ω =

√
2γ

δt
(2.98)

is finite. The stochastic variable can be rewritten as

xs = y + (⟨Â⟩ − y)γδt+
(

ℏ2

4m2

1

2γδt

)1/4√
δtW, (2.99)

xs = y + (⟨Â⟩ − y)γδt+ γ√
4λ
δW, (2.100)

with λ controlling the amount of noise in the stochastic variable:

(
ℏ2

4m2

1

2γδt

)1/4

≡ γ√
4λ

⇒ λ =
m

ℏ

√
γ5δt

2
. (2.101)
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The measurement outcome xs should be understood as the measurement outcome at a given

time. Also, imagine that the experimental setup can prepare the initial auxiliary system based on

the measurement outcome of the previous step.

xs ∼ Dt, (2.102)

y ∼ Dt−1. (2.103)

This setup creates a time traceDt that describes the measurement outcome in time. The evolution

of the signal Dt is described by:

Dt −Dt−1 ≡ dD = (⟨Â⟩ −Dt−1)γδt+
γ√
4λ
δW. (2.104)

Note the similarity with Eq. (2.25) without the explicit assumption of a low-pass filter on the

weak measurement signal.

To solve for the evolution of the quantum state in Eq. (2.89) let’s redefine the variables

m,Ω in terms of λ, γ, δt:

Ω =

√
2γ

δt
,

m

ℏ
= λ

√
2

γ5δt
. (2.105)

The post-measurement state in Eq. (2.89) can be solved using the position representation of the
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coherent states:

〈
x

∣∣∣∣∣
√
mΩ

2ℏ
[
ξa + (Dt − ξa)e−iΩδt

]〉
=

(
1

πℏmΩ

)1/4

e
i⟨p⟩x

ℏ e
−i⟨p⟩⟨x⟩

2ℏ e−
mΩ
2ℏ (x−⟨x⟩)2 , (2.106)

⟨x⟩ =
√

2ℏ
mΩ

Re

(√
mΩ

2ℏ
[
ξa + (Dt − ξa)e−iΩδt

])
= Dt + (ξa −Dt)γδt, (2.107)

⟨p⟩ =
√

ℏmΩ

2
Im

(√
mΩ

2ℏ
[
ξa + (Dt − ξa)e−iΩδt

])
= 2mγ(ξa −Dt). (2.108)

The POVM equivalent to Eq. (2.89) can be written as:

M̂(x|Dt) =

(
mΩ

π

)1/4

e
− 2iλ

γ
Â(Dt−Â)

√
1

γδt

[
1
2
(Dt−Â)+(⟨Â⟩−Â/2−Dt/2)γδt+

γ√
4λ

δW )
]

×e−
(

λ
γ2δt

)[
(⟨Â⟩−Â)γδt+ γ√

4λ
δW

]2
.

(2.109)

Similar to what happens with Eq. (2.88), here there is a problematic
√

1/δt in the phase factor.

A possible solution is to consider that the true POVM consists of an additional unitary evolution

to cancel out the phase factor in Eq. (2.109). In that situation, the evolution of the quantum state

is given by:

M̂(Dt+1|Dt)→
(

2λ

πγ2δt

)1/4

e
−
(

λ
γ2δt

)
[(Dt+1−Dt)−(Â−Dt)γδt]

2

, (2.110)

ρ̂t+1 = eLδt
M̂(Dt+1|Dt)ρ̂tM̂

†(Dt+1|Dt)

Tr
{
M̂(Dt+1|Dt)ρ̂tM̂ †(Dt+1|Dt)

} (2.111)

Expanding this operator up to the second order in δW (and first order in δt), one can derive

the Belavkin equation. Then, combining with the continuous signal in Eq. (2.104), one can derive

the QFPME (2.30) using the stochastic steps of Ref. [1].
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2.7 Discussion and concluding remarks

All weak measurement models presented here were studied with the goal of modeling sys-

tems under continuous monitoring. The impulsive model for weak measurement is the simplest

as it doesn’t consider the detector’s inertia and assumes an initial state with a diverging variance

that scales in the order of 1/δt. The second model presented can generalize the Belavkin equa-

tion by considering the finite mass of the auxiliary system. A correction in the measurement

backaction and the Hamiltonian is obtained. The new Hamiltonian has a term that resembles the

linear feedback Hamiltonian used in early continuous feedback protocols. In contrast, the back-

action has a new term that scales inversely with the so-called measurement strength, yielding a

non-monotonic relation between the measurement backaction and the measurement strength.

Finally, I introduced the harmonic model for measurements. The model uses a bounded

Hamiltonian with inertia and potential strength as free parameters for the auxiliary system. I

showed that analytical results can be obtained using the algebra of displacement operators and

coherent states. By separating the components of the total Hamiltonian that live in different eigen-

states of the measured operator, one can find how the interesting degrees of freedom couple to

the motional degrees of freedom of the pointer. This analytical model can also be used with both

momentum and position measurements. This new feature is not present in the impulsive model,

which only considers a linear interaction between the measured operator and the auxiliary system.

Both the position and momentum measurement variations of the harmonic model yield naturally

to a signal that evolves like an OU process — a critical ingredient that is included by hand in the

modeling of QFPME [1]. In particular, the momentum measurement variation is connected to

the classical picture of a Brownian particle attached to a spring in a stochastic environment. The
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filtered signal evolves as a classical trajectory for the particle’s position. However, the parameters

in Eq. (2.81) or Eq. (2.105) give ill-defined POVMs that have either
√
δt for

√
1/δt dependencies

in the phase factor. To correct these problems, I need to assume that a unitary evolution is added

to balance the complex phases that are introduced by the position/momentum representation of

the coherent state.

This chapter summarizes some developments in more general measurement models, partic-

ularly continuous measurements. The goal is to broaden the range of possibilities and options for

experimentalists to model their experiments with stochastic master equations. For the following

two chapters, I’ll focus on the QFPME derived using the standard weak measurement protocol

discussed in Sec. 2.3.
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Chapter 3: Continuous feedback protocols for cooling and trapping a quantum

harmonic oscillator

This chapter is based primarily on work done with Pharnam Bakhshinezhad, Björn Annby-

Andersson, Patrick P. Potts, Peter Samuelsson, and Christopher Jarzynski, which has been pub-

lished in the article ”Continuous feedback protocols for cooling and trapping a quantum harmonic

oscillator” [3] (Phys. Rev. E 111, 014152). I contributed to this project by deriving analytical

formulas for all protocols and organizing most of the results in the current presentation form. I

also contributed to generalizing the QFPME for multiple measurements.

In this chapter, I apply the formalism of the Quantum Fokker-Planck Master Equation (see

Chapter 2) to study the cooling and trapping of a harmonic oscillator for several protocols based

on position and/or momentum measurements. Protocols can cool the oscillator down to, or close

to, the ground state for suitable choices of parameters. This analysis provides an analytically

solvable case study of quantum measurement and feedback and illustrates the application of the

QFPME to continuous quantum systems.

3.1 Introduction

Technologies and techniques to manipulate individual quantum systems have advanced

rapidly in recent years. Applications such as quantum computing [32, 94, 95] and sensing [96, 97]

53



rely on fine measurements and precise control, along with the ability to prepare systems in desired

states. There is particular interest in cooling systems to near-zero temperatures, that is, near the

ground state, where quantum phenomena typically become enhanced.

Standard techniques for cooling quantum systems include laser cooling [19, 98–100], evap-

orative cooling [101–104] and cavity cooling [105–107]. Alternatively, systems can be cooled

through measurement and feedback [55, 82, 83, 108–112, 112–118], in a manner reminiscent

of the Maxwell’s demon thought experiment. Fundamental costs and bounds associated with

cooling quantum systems are subjects of active investigation [119–122].

Recently, Annby-Andersson et. al. [1] introduced a theoretical framework for modeling

continuous, Markovian measurement and feedback of quantum systems. In this framework, an

external agent continuously monitors a system observable Â using weak measurements [56, 68,

69, 123–131]. The noisy measurement outcome D(t), supplied by a detector of finite bandwidth,

enters as a parameter of the system’s Hamiltonian (or Liouvillean for an open system). In this

manner, feedback is applied to the system, as seen in Fig. 3.1. The central result of this work

is the QFPME, which is discussed in Sec. 2.4, describing the coupled dynamics of the quantum

system and detector outcome at the ensemble level.

Here, we apply the framework of QFPME to study the cooling of a quantum harmonic

oscillator under various feedback protocols. We imagine that an external agent continuously per-

forms weak measurements of the system’s position, x, or momentum, p, or both, and manipulates

the location of the harmonic well based on the measurement outcomes. The agent aims to bring

the system to the harmonic oscillator ground state, centered at the origin, x = 0. We will see that

the goals of cooling (to the ground state) and trapping (at the origin) compete with one another.

This system is simple enough to obtain analytical results, allowing us to compare the asymptotic
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energy under different protocols and to investigate quantitatively how the rate and degree of cool-

ing depend on parameters such as the detector bandwidth, the oscillator’s natural frequency, and

the measurement strength.

Figure 3.1: Illustration of Protocol X (defined in the next section). Cooling is achieved by mea-
suring the position continuously and applying feedback by changing the location of the harmonic
potential. The measurement outcome is a low-pass filtered version (red line) of the noisy weak
measurement (light blue line).

At the same time, the cooling of a quantum harmonic oscillator is experimentally relevant

and has been proposed and/or implemented in trapped ions, nano- and micro-mechanical res-

onators, levitated nanoparticles and optomechanical cavities [82, 106, 108, 109, 112, 114, 132–

140]. The results presented in this work differ from previous studies of continuous feedback in

harmonic oscillators [131, 141–144] due to the presence of finite bandwidth. This built-in feature

of the QFPME [1] allows for feeding back non-linear functions of the measurement outcome.

Using the Markovianity of the QFPME and the system’s symmetries, we derive closed

formulas for the asymptotic energy of a quantum harmonic oscillator under continuous feedback

cooling. We show that by tuning the protocol, one can obtain either a cooling-focused protocol

or a trapping-focused protocol. If the system is weakly coupled to a thermal bath, its final energy

is an average of the asymptotic feedback energy and the thermal energy, weighted by the cooling
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and thermal relaxation rates.

This chapter is structured as follows. In Sec. 3.2, we introduce the harmonic oscillator

model and cooling protocols. Section 3.3 describes the cooling and trapping results achieved

using these protocols. Section 3.4 presents numerical simulations and compares them with ana-

lytical results. Finally, we compare protocols in Sec. 3.5 and conclude in Sec. 3.6.

3.2 Model and QFPME

We consider a system that is continuously measured in one or more observables. Based on

the outcomes of these measurements, which are generally noisy, an external agent implements a

time-dependent Hamiltonian with the goal of decreasing the system’s internal energy. We will

refer to this process as a cooling protocol. As described above, a secondary aim is to trap the

particle at or near the origin, in the long time limit.

3.2.1 Classical model

Although this chapter focuses on quantum feedback control, it is useful to gain intuition by

first analyzing a classical cooling protocol. Consider a classical harmonic oscillator described by

the Hamiltonian

H =
p2

2m
+
mω2

2
(x− bDx)

2. (3.1)

Here, Dx represents a recent measurement of the particle’s position, and b > 0 is a fixed pa-

rameter that tunes how the external agent manipulates the harmonic well’s location in response

to this measurement. In the following, we describe the behavior of this system under both dis-

crete and continuous cooling protocols. Details of the analyses of these protocols are found in
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Appendix 3A.

We first consider a cooling protocol that proceeds in discrete time steps ∆t, where ∆t is

not an integer multiple of π/ω. At each step, the agent measures the particle’s current position

(i.e. Dx = x) and instantaneously moves the trap’s location to bDx. Between measurements the

particle evolves under the Hamiltonian H , with Dx fixed. If b = 1, the particle loses all of its

potential energy at each step, as the minimum of the harmonic potential is moved to the particle’s

current location. At long times, the particle comes to rest at the minimum of the harmonic well, at

a location Dx,∞ ̸= 0 that depends on the initial position and momentum (x0, p0) (see Eq. (3.A2),

and note that Dx,∞ = x∞). Thus the particle is cooled but is not trapped at the origin. By

contrast, if b < 1 then at each time step the trap is placed between the particle’s current location

and the origin, and the particle relaxes asymptotically to rest at the origin (Dx,∞ = 0), hence both

trapping and cooling are achieved. If b > 1 then these discrete dynamics become unstable and

produce neither cooling nor trapping, as the trap is repeatedly placed further from the origin than

the particle’s current location.

To model the continuous version of this protocol and account for the fact that a real exper-

imental apparatus does not respond instantaneously, we treat Dx(t) as a dynamical variable that

decays exponentially towards x(t). Specifically, the system (x, p) and parameter Dx obey the

equations of motion,

ẋ =
p

m
,

ṗ = −mω2 (x− bDx) ,

Ḋx = γ (x−Dx) ,

(3.2)

where γ > 0 is a decay rate that characterizes the intrinsic lag of the experimental apparatus. The

57



value γ−1 roughly corresponds to ∆t in the discrete case.

For b < 1, the dynamics generated by Eq. (3.2) relax to a stable fixed point at p∞ = x∞ =

Dx,∞ = 0, thereby achieving both trapping and cooling. For b > 1, Eq. (3.2) produces unstable

solutions in which both Dx and x accelerate at an exponential rate away from the origin. At

the critical value b = 1, the system relaxes to a solution given by p∞ = 0 and x∞ = Dx,∞ =

Dx0 + γp0/mω
2 (Eq. (3.A7)); in this situation the particle is cooled but not trapped at the origin.

When b = 1, the relaxation timescale can be divided into two different regimes: a) if

γ < 2ω the system is underdamped, and the relaxation rate is proportional to γ; and b) if γ > 2ω

the system is overdamped, and when γ ≫ ω the relaxation rate is given by ω2/γ, thus cooling

occurs slowly.

We see that the discrete and the continuous protocols produce similar behavior for b < 1,

b = 1 and b > 1. In the quantum case that we consider below, we use protocols analogous to the

continuous protocol just presented, and the intuition on how to cool the system by manipulating

the potential energy is similar. However, two additional ingredients appear in the quantum model:

measurement backaction and measurement noise.

3.2.2 Quantum model - cooling protocols

Consider a quantum harmonic oscillator of mass m and characteristic frequency ω under-

going continuous measurement and feedback. Introducing dimensionless operators p̂→ p̂
√
ℏmω

and x̂→ x̂
√

ℏ/mω, the Hamiltonian in the absence of feedback becomes

Ĥ0 =
ℏω
2

(
p̂2 + x̂2

)
. (3.3)
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To implement feedback, we study three protocols similar to the one considered in the classical

example. We imagine that position and/or momentum are continuously measured, and cooling

is achieved by implementing a time-dependent Hamiltonian based on these measurements. The

measurements correspond to Hermitian operators Âi ∈ {x̂, p̂}, and feedback is applied through

parameters Di ∈ {Dx, Dp}, see Eqs. (3.4)-(3.6). These parameters correspond to the continuous

measurement outcome and will be discussed in greater detail in the next section. They evolve

similarly to Dx in Eq. (3.2).

Our first quantum protocol mimics the classical example. The position Âx = x̂ is measured,

and feedback is applied through the parameter Dx of the Hamiltonian

Ĥx(Dx) =
ℏω
2

[
p̂2 + (x̂− bDx)

2] . (3.4)

We will refer to this situation as Protocol X, which is illustrated in Fig. 3.1. As in the classical

model of Sec. 3.2.1, the parameter b controls how we move the minimum of the potential in

response to the particle’s measured location. We will see that b plays an important role in the

trapping condition.

The second protocol generalizes the first by allowing both position and momentum mea-

surements Âx = x̂ and Âp = p̂. Here the feedback Hamiltonian is

Ĥxp(D) =
ℏω
2

[
(p̂− bDp)

2 + (x̂− bDx)
2] , (3.5)

where D = (Dx, Dp). We will refer to this protocol as Protocol XP.

Our third protocol is inspired by the cold damping protocol [109, 145–151] that is widely
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used for cooling and trapping experiments. In the cold damping protocol, measurements are

performed in the position basis Âx = x̂ and feedback is applied to create a force to oppose the

direction of the movement Hfeedback ∝ Ḋxx̂. However, the QFPME described in Sec. 2.4 requires

a protocol that depends on Dx and not on its time-derivative Ḋx. Hence, we introduce a feedback

Hamiltonian with a term proportional to −p̂Dx:

Ĥc(Dx) =
ℏω
2

[
(p̂− µDx)

2 + x̂2
]
. (3.6)

A quadratic term (ℏω/2)µ2D2
x term was added to give the feedback Hamiltonian a ground state

energy of ℏω/2, as with the other protocols. Even though this shift is feedback-dependent, it

does not change the physical behavior of the system. We will refer to this strategy as Protocol

C, cross-feedback, to differentiate it from the usual cold damping scheme. The dimensionless

constant µ regulates the force exerted on the particle.

3.2.3 Quantum Fokker-Planck Master Equation

We now describe how we model these protocols. Many studies of continuous measurement

and feedback have focused on quantum Brownian models and stochastic equations [83, 116, 142,

144, 152–157], and these usually start with the Belavkin equation [66, 67, 84, 86–88, 131] for a

continuous monitored system:

dρ̂ = − i
ℏ
[Ĥ, ρ̂]dt+

∑
j

λjD[Âj]ρ̂dt+
√
λjdWj{Âj − ⟨Âj⟩, ρ̂}. (3.7)
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The index j runs over the measured observables (Â1, Â2, . . . ). And the variables λj correspond

to the strength of the j’th measurement. The variables dWj are Wiener increments and satisfy

dWidWj = δijdt [75]. In this chapter, we consider that the evolution of Eq. (3.7) is coupled to a

finite bandwidth measurement signal that evolves similarly to Dx in Eq. (3.2):

dDj = γj(⟨Âj⟩ −Dj)dt+
γj√
4λj

dWj. (3.8)

The variables D = (D1, D2, . . . ) were introduced in Ref. [1] to model a finite bandwidth mea-

surement detector. These variables relax to the expected value of the measured operator, where

γj is the bandwidth of the j’th detector and γj/
√

4λj determines the size of the noise in the

detector. The finite bandwidth in the measurement signal is experimentally motivated, and it al-

lows for nonlinear feedback to be applied by varying the Hamiltonian based on the measurement

outcome Ĥ = Ĥ(D). We note that without the filtering, only linear feedback can be considered

due to the white noise in the unfiltered measurement outcome [80]. While the nonlinear term in

our feedback protocols is a fluctuating constant, it is necessary to describe the cooling protocols

in terms of moving the potential.

Here, we are interested in deriving analytical results. To this end, we employ the recently

derived Quantum Fokker-Planck Master Equation [1] (see Sec. 2.4), which is obtained by av-

eraging the Belavkin equation (3.7) over all possible realizations of dWj , singling out the lat-

est observed measurement outcome (3.8) - for a derivation for multiple measurements, see Ap-

pendix 3B. This formalism is similar to the hybrid quantum-classical master equations derived in

[158, 159].

The Quantum Fokker-Planck master equation [1], extended here to measurements of mul-
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tiple observables is:

∂tρ̂(D, t) =

− i

ℏ

[
Ĥ(D), ρ̂(D, t)

]
+
∑
j

λjD[Âj]ρ̂(D, t) +
∑
j

[
−γj∂Dj

Aj ρ̂(D, t) +
γ2j
8λj

∂2Dj
ρ̂(D, t)

]
,

(3.9)

The index j runs over the measured observables (Â1, Â2, . . . ) and associated detector variables

D = (D1, D2, . . . ), and ρ̂(D, t) is the joint state for the quantum system and the classical detector

variables D.

The first term on the right side of Eq. (3.9) generates unitary evolution under Ĥ(D). The

second term represents the measurement backaction, and λj denotes the strength of the j’th mea-

surement. The superoperator D[ĉ]ρ̂ ≡ ĉρ̂ĉ† − 1
2
ĉ†ĉρ̂ − 1

2
ρ̂ĉ†ĉ is the dissipator, where ĉ is an

arbitrary operator. The third term, representing the system-detector coupling, describes the drift

of each measurement outcome Dj toward a value determined by the system state and the mea-

sured operator Âj . Here, Aj ρ̂ ≡ 1
2
{Âj −Dj, ρ̂}, where {·, ·} denotes the anti-commutator. The

fourth term represents the diffusion of Dj due to measurement noise, where γj/8λj determines

the magnitude of the noise. The constant γj represents the j’th detector bandwidth, hence γ−1
j is

the detector delay. See Chapter 2 for the derivation and a more detailed discussion of the QFPME.

Since ρ̂(D, t) is a hybrid distribution over the combined spaces of the quantum system and

the classical detector, expectation values are calculated jointly over these spaces:

⟨f̂(D)⟩(t) =
∫

dDTr
[
f̂(D)ρ̂(D, t)

]
, (3.10)

where f̂(D) is a D-dependent operator representing an observable of interest. We will focus on
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the evolution of such expectation values rather than attempting to solve Eq. (3.9) for ρ̂(D, t).

3.3 Results

In the following sections, we apply Eq. (3.9) to the protocols described by Eqs. (3.4-3.6).

In order to focus on the cooling and trapping produced by these protocols, we present the main

results below, leaving technical details of their derivations to Appendices.

3.3.1 Protocol X: position measurement

Protocol X, defined by Eq. (3.4) for Ĥx(Dx), involves continuous measurement of position.

The joint state ρ̂(Dx, t) obeys (see Eq. (3.9))

∂tρ̂ = −
i

ℏ

[
Ĥx, ρ̂

]
+ λD[x̂]ρ̂− γ

2
∂Dx{x̂−Dx, ρ̂}+

γ2

8λ
∂2Dx

ρ̂. (3.11)

For simplicity, we omit the subscript x in the parameters γ and λ. This protocol is the quantum

analog of the protocol discussed in Sec. 3.2.1. Derivations of the results presented here are found

in Appendix 3C.

3.3.1.1 Energy and trapping

Using Eqs. (3.10) and (3.11), we find that to solve for the expectation value of the feedback

Hamiltonian Ĥx(Dx) we must solve a system of six coupled linear differential equations. The

system can be simplified to three coupled equations in the case b = 1, as discussed in Appendix
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3C. From the fixed point of this set of equations, we find that the energy relaxes to

⟨Ĥx⟩∞ =
ℏω
2

[
λ

bγ
+
bγ

4λ
+

(2− b)γλ
2bω2

]
. (3.12)

A numerical verification of Eq. (3.12) for b = 1 is shown in Fig. 3.2a. We also find, from the

same fixed point, that the position variance σ2
x ≡ ⟨x̂2⟩ − ⟨x̂⟩2 relaxes to

σ2
x,∞ =

1

2

[
λ

bγ
+

bγ

4(1− b)λ
+

γλ

b(1− b)ω2

]
. (3.13)

This variance diverges when b → 1, indicating that the protocol does not trap the particle at the

origin. Intuitively, when b = 1 there is no restoring force pushing the values of ⟨x⟩ and ⟨Dx⟩

toward the origin. Rather, due to the underlying measurement noise, the particle and the detector

together perform unbiased Brownian motion.

The timescale for the system to relax to its asymptotic state is determined from the eigen-

values of the matrix in Eq. (3.A11). While we do not have a general, analytical expression for

these eigenvalues, in two specific regimes the relaxation rate χ simplifies considerably:

b = 1, γ < 2ω ⇒ χ = γ, (3.14)

ω ≫ γ ⇒ χ = γb. (3.15)

If b is small, the protocol is being applied weakly, and the relaxation is slow.
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3.3.1.2 Optimal regime and fine-tuning

To optimize the protocol, we can choose values of b that minimize either the energy or the

position variance, depending on whether we prioritize cooling or trapping.

We minimize the asymptotic energy by setting

b = be = 2λ

√
1

ω2
+

1

γ2
. (3.16)

Note that this solution is valid only when be < 1.

The position variance is minimized by setting

b = bv =

(
1 +

γ

2λ

√
4λ2 + ω2

γ2 + ω2

)−1

. (3.17)

For ω ≫ γ ≫ λ and b = bv (note that in this regime bv ≃ be), we obtain

σ2
x,∞ =

1

2

(
1 +

λ

γ
+

γ2

2ω2

)
+O(γλ/ω2) (3.18)

⟨Ĥx⟩∞ =
ℏω
2

(
1 +

2λ2

γ2
+

γ2

2ω2

)
+O(γλ/ω2). (3.19)

This result shows that trapping and cooling can be achieved simultaneously, to arbitrary accuracy.

In this regime, the feedback is weak (b≪ 1) and the relaxation occurs slowly.

3.3.2 Protocol XP: position and momentum measurements

In Protocol XP, the feedback uses weak measurements of both position and momentum.

The feedback Hamiltonian is thus parametrized by Dx and Dp (see Eq. (3.5)).
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For this protocol the QFPME for ρ̂(D, t) is

∂tρ̂ =−
i

ℏ

[
Ĥxp, ρ̂

]
+ λxD[x̂]ρ̂+ λpD[p̂]ρ̂+ γxFxρ̂+ γpFpρ̂, (3.20)

where Fiρ̂ = −(1/2)∂Di
{̂i − Di, ρ̂} + (γi/8λi)∂

2
Di
ρ̂ and i = x, p. The detector bandwidths

γi and measurement strengths λi characterize the measurement devices. For simplicity, we set

λx = λp = λ and γx = γp = γ.

3.3.2.1 Energy and trapping

(a) (b) (c)

Figure 3.2: Comparison of analytical formulas (dashed lines) to numerical results (circles). We
chose b = 1 for Protocols X and XP for simplicity. The average asymptotic energy was calculated
using 1000 runs of the stochastic equations for (a) Protocol X for different values of measurement
strength. (b) Protocol XP for different values of measurement strength. Here, we can see that the
energy only depends on the ratio γ/λ. The non-monotonic energy behavior as a function of γ/λ
for both Protocols X and XP can be explained by the competition between the noise sources. See
Sec. 3.4 for a detailed discussion. (c) Cross-feedback protocol, where we chose µ = 2λ/ω. Note
that this plot illustrates that we need γ ≫ ω ≫ λ to achieve maximum cooling.

As in Sec. (3.3.1), we derive asymptotic solutions for the average energy ⟨Ĥxp⟩∞ and po-
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sition variance σ2
x,∞ (see Appendix 3D for details):

⟨Ĥxp⟩∞ =
ℏω
2

[
λ

bγ
+
bγ

4λ
+

(1− b)γλ
2ω2

]
(3.21)

σ2
x,∞ =

1

2

[
λ

bγ
+

bγ

4(1− b)λ
+

γλ

b(1− b)ω2

]
. (3.22)

These solutions were derived from the fixed point of a system of four coupled differential equa-

tions. Note that the position variance is the same for Protocols X and XP.

As with Protocol X, the variance in position diverges when b → 1. This occurs because

⟨x̂⟩∞ = 0 = ⟨Dx⟩∞ is no longer a stable fixed point, and the particle diffuses in space much like

a Brownian particle. Figure 3.2b presents a numerical verification of Eq. (3.21) for b = 1.

The relaxation rate to asymptotic values in Eqs. (3.21) and (3.22) is given by the smallest

eigenvalue of the 4× 4 matrix in Eq. (3.A17):

χ = minRe

(
γ ± ∆±√

2

)
, (3.23)

with

∆± =
√
−ω2 + γ2 ± Ω

Ω =
√
ω4 + 2 (1− 8b+ 8b2)ω2γ2 + γ4.

(3.24)

In two regimes, the relaxation rate χ simplifies as follows:

b = 1 ⇒ χ = 2γ, (3.25)

ω ≫ γ ⇒ χ = 2γb. (3.26)
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Compare with Eqs. (3.14) and (3.15). As with Protocol X, this protocol becomes slow as the feed-

back weakens in the limit b→ 0. Note that, using two measurements, the relaxation timescale is

twice as fast as Protocol X.

3.3.2.2 Optimal protocol

Because the energy and variance solutions for Protocol XP (Eqs. (3.21), (3.22)) are similar

to the ones found in Protocol X (Eqs. (3.12), (3.13)), the optimal parameter choices and the

associated asymptotic position variance and energy values are the same for both protocols, up to

O(γλ/ω2).

The asymptotic energy for Protocol XP is smaller than the one achieved by Protocol X by

a term ℏωγλ/4ω2. This is important because if one is not interested in trapping the particle, then

the choices b = 1 and γ = 2λ achieve ground-state cooling arbitrarily fast (see Appendix 3D):

⟨Ĥxp⟩∞ =
ℏω
2
. (3.27)

This protocol is able to cool down the particle to the ground state because the symmetric

measurement of position and momentum can saturate the uncertainty relation. The presence of

a low-pass filter can rectify the noisy signal and keep the particle at the bottom of the harmonic

potential if γ = 2λ; see Sec.3.4 for a detailed discussion.

3.3.3 Protocol C: Cross feedback

Next, we consider the third protocol, with Ĥc(Dx) defined by Eq. (3.6). Here, measure-

ments performed on the particle’s position are translated into feedback applied to its momentum,
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and the QFPME is

∂tρ̂ = −
i

ℏ

[
Ĥc, ρ̂

]
+ λD[x̂]ρ̂+ γFxρ̂ (3.28)

3.3.3.1 Energy and trapping

The relevant quantities to solve for the asymptotic energy using the QFPME are determined

by six coupled linear ODEs, see Appendix 3E.

Because of the lack of symmetries in the problem, we could not solve for the eigenvalues

of the matrix in Eq. (3.A24). As a result, for an arbitrary choice of parameters (ω, λ, γ, µ), we

do not know when the system converges asymptotically to a fixed value. However, if the solution

does converge, then the asymptotic energy with respect to the Hamiltonian in Eq. (3.6) is:

⟨Ĥc⟩∞ =
ℏω
2

(
µω

4λ
+

λ

µω
+

λ

2γ
+
λω

γ2µ
+
γµ2

8λ

)
. (3.29)

We plot a numerical verification of Eq. (3.29) for µ = 2λ/ω in Fig. 3.2c.

The position variance can also be obtained from the asymptotic solution, see Eq. (3.A35):

σ2
x,∞ =

1

2

(
µω

4λ
+

λ

µω
+
λω

γ2µ

)
. (3.30)

We see that this protocol is able to trap the particle (i.e. σ2
x,∞ is finite) for all positive values of µ,

in contrast with the other two protocols that required b < 1 to achieve trapping.
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3.3.3.2 Optimal protocol

We can verify from Eq. (3.29) that no choice of parameters produces ground-state cooling.

Finding the values of µ, λ, γ and ω that minimize ⟨Ĥc⟩∞ is difficult, but if we assume 1 ≫

ω/γ ≫ λ/ω, µ then the value of µ that minimizes the asymptotic energy is

µ∗ = 2λ/ω ≪ 1, (3.31)

leading to

⟨Ĥc⟩∞ =
ℏω
2

(
1 +

λγ

2ω2
+

ω2

2γ2

)
+O(λ/γ) (3.32)

For small µ, the system’s relaxation timescale is µω, to O(µ) (see Eq. (3.A27)), which

under optimal cooling conditions is given by µ∗ω = 2λ.

As with the other protocols, the optimal condition for cooling is the same as the optimal

condition for trapping. Here, using µ = 2λ/ω, we have

σ2
x,∞ =

1

2

(
1 +

ω2

2γ2

)
(3.33)

in dimensionless units.

3.3.4 Coupling to a thermal bath

The above calculations were performed for a closed quantum system under continuous

measurement and feedback. We now consider the case in which the system is open. Specifically,

it is coupled to a thermal environment as it simultaneously undergoes measurement and feedback.
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The environment’s presence is modeled by adding Lindblad jump terms,

Γ(n̄+ 1)D[âi]ρ̂(D) + Γn̄D[â†i ]ρ̂(D), (3.34)

to the QFPME for each protocol. Here Γ denotes the system-bath coupling strength, and n̄ =(
eβℏω − 1

)−1 controls the asymptotic average energy the system would relax to, in the absence

of feedback control:

Uth = ℏω(n̄+ 1/2). (3.35)

The operators âi (â†i ) with i = {x, xp, c} are the annihilation (creation) operators:

âx =
√
1/2 (x̂−Dx + ip̂) , (3.36)

âxp =
√
1/2 (x̂−Dx + ip̂− iDp) , (3.37)

âc =
√
1/2 (x̂+ ip̂− iµDx) . (3.38)

Here, we focus on Protocols X and XP when b = 1, as the general case b ̸= 1 is cumbersome and

not particularly insightful.

The operators {âi} satisfy [Ĥi, âi] = −ℏωâi for i ∈ {x, xp, c}, hence the effect of the bath

is to create and destroy single quanta of energy in the measurement-outcome-dependent energy

basis.

Let us assume the following constraints for each protocol: a) Protocol X, ω ≫ γ, λ,Γ; b)

Protocol XP, no constraints; c) Protocol C, γ ≫ ω ≫ µγ, λγ/ω,Γγ/ω. We can then write the
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asymptotic energy as a weighted average,

⟨Ĥi⟩Γ =
Γi⟨Ĥi⟩∞ + ΓUth

Γi + Γ
, (3.39)

where i = {x, xp, c}. The weight factors Γi are:

Γx = γ, (3.40)

Γxp = 2γ, (3.41)

Γc = µω, (3.42)

Equation (3.39) expresses the asymptotic energy as a weighted average of the feedback

energy and the thermal energy, where the weights are the protocols’ relaxation rates (close to

their optimal conditions) and the thermal bath’s relaxation rate. This weighted average reflects

a competition between the bath, which tries to bring the system to thermal equilibrium, and the

measurement and feedback protocol, which tries to minimize the system’s energy. In the absence

of measurement and feedback, Γ represents the relaxation rate to thermal equilibrium. When

measurement and feedback are present, but γ, λ, µω ≪ Γ, then the effects of the bath are domi-

nant and the system’s asymptotic energy is close to the thermal equilibrium energy. Conversely,

if γ, λ, µω ≫ Γ, then the system is stabilized near the solution given by the asymptotic average

energy of a closed system. Thus, thermal coupling imposes an additional requirement, namely

γ, λ, µω ≫ Γ, that must be satisfied to maximize cooling.
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3.4 Trajectory simulation

(a) (b)

Figure 3.3: Single trajectory simulation for Protocol XP (b = 1). Here, we plot 5 trajectories
(light blue lines) and the average energy for 2000 trajectories (blue line). The trajectory energy,
in general, only converges with the analytical result (dashed line) in the ensemble sense. See
Sec. 3.4 for simulation details. (a) Single trajectory simulation for Protocol XP with ground state
cooling (γ = 2λ). The energy initially evolves stochastically, but after the variances have decayed
to their asymptotic values, the energy evolution becomes deterministic, producing ground-state
cooling at the trajectory level. (b) Here, the protocol applied is not at the ground-state condition
(γ ̸= 2λ). Note that the individual trajectories don’t necessarily converge to a fixed energy value,
but the ensemble average converges to the analytical result derived in Eq. (3.21).

Here, we describe numerical simulations of stochastic trajectories that were used both to

test the analytical results of Sec. 3.3, and to build trajectory-level intuition about the ground

state cooling described in Sec. 3.3.2.2. The quantities described in this section are the noisy

counterparts of the quantities discussed in previous sections.

Our starting point is the Belavkin Equation (3.7) with Â1 = x̂ and Â2 = p̂, coupled with
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the evolution of the measurement outcome:

dρ̂ =− i

ℏ
[Ĥ(D), ρ̂]dt

+ λxD[x̂]ρ̂dt+
√
λxdWx{x̂− ⟨x̂⟩, ρ̂}

+ λpD[p̂]ρ̂dt+
√
λpdWp{p̂− ⟨p̂⟩, ρ̂},

(3.43)

dDi = γi(⟨̂i⟩ −Di) +
γi√
4λi

dWi, i = x, p. (3.44)

Equations (3.43) and (3.44) describe the coupled, stochastic dynamics of the system ρ̂ and

measurement outcomes Di. Equation (3.43) is the Belavkin equation, which generalizes the

Schrödinger equation to continuously monitored systems. The Belavkin equation relates the in-

finitesimal stochastic evolution of the density matrix to the unitary evolution, backaction, and

random update based on the stochastic outcome of the measurement. Equation (3.44) describes

the noisy relaxation of the detector variables Dx and Dp toward the average position and momen-

tum ⟨x̂⟩ and ⟨p̂⟩.

Together, Eqs. (3.43) and (3.44) are the single-trajectory counterparts of the QFPME,

Eq. (3.9), which describes the combined evolution at the ensemble level. Equation (3.43) gives

rise to the unitary part and the backaction terms in Eq. (3.9) while Eq. (3.44) generates the Fokker-

Planck component of the QFPME.

In Eq. (3.43), the system’s Hamiltonian has the general quadratic form

Ĥ(D) =
ℏω
2

[
(p̂− bxDx − bpDp)

2 + (x̂− cxDx − cpDp)
2] , (3.45)

which can reproduce all the protocols introduced and investigated in Sec. 3.2 and 3.3.
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Protocol Regime Timescale Energy Position Variance

X ω ≫ γ ≫ λ γb ℏω
2

(
λ
bγ

+ bγ
4λ

)
1
2

(
λ
bγ

+ bγ
4(1−b)λ

)
XP

γ = 2λ, b = 1 2γ ℏω
2

∞

ω ≫ γ ≫ λ 2γb ℏω
2

(
λ
bγ

+ bγ
4λ

)
1
2

(
λ
bγ

+ bγ
4(1−b)λ

)
C γ ≫ ω ≫ λγ/ω µω ℏω

2

(
µω
4λ

+ λ
µω

)
1
2

(
µω
4λ

+ λ
µω

)
Table 3.1: Performance of different protocols under optimal conditions. The column Regime
denotes the hierarchy resulting in optimal conditions. The column Timescale shows the relaxation
rate to the asymptotic value. The column Energy represents the asymptotic energy achieved. The
column Position Variance shows the variance obtained after trapping the particle. Note the special
condition for ground-state cooling that can only be achieved by Protocol XP. The optimal choice
for parameters to achieve near ground-state cooling are b = 2λ/γ and µ = 2λ/ω.

Under Eq. (3.43), the evolution of ⟨x̂⟩, ⟨p̂⟩ and higher cumulants (such as variances) is

described by a set of infinitely many coupled equations. As discussed in Appendix 3G, if we

assume an initial Gaussian wave function for the state of the system [69, 81, 160], then the

system’s state remains Gaussian at all times. The system’s evolution is then uniquely defined by

the evolution of the first two sets of cumulants, allowing us to write a closed set of SDEs for these

cumulants and the detector variablesDx andDp; see Eq. (3.A41). We have numerically simulated

trajectories evolving under these coupled SDEs, and by averaging over these trajectories, we

have calculated the asymptotic energy values ⟨H⟩∞ for various protocols. Figure 3.2 shows

good agreement between these numerically obtained values and the analytical results derived in

Sec. 3.3.

The trajectory approach also provides insight into how Protocol XP achieves ground-state

cooling for b = 1 and γ = 2λ in Eq. (3.21). Using bx = cp = 0 and bp = cx = 1 in Eq. (3.45),

when we choose λx = λp = λ the system evolves asymptotically to a symmetric Gaussian with

variances (see Eq. (3.A43))

(Vx)∞ = (Vp)∞ =
1

2
. (3.46)

75



Note that these quantities differ from the previously discussed position variance. Here, they refer

to the actual wave function position variance at the trajectory level. Conversely, the results shown

before refer to the ensemble average position variance over many realizations of the experiment.

After the variances decay, the stochastic equation for the average energy d⟨Ĥxp⟩ = dTr
[
Ĥxpρ̂

]
,

using Eq. (3.43), can be simplified using γx = γp = γ:

d⟨Ĥxp⟩ =2γ
(
⟨Ĥxp⟩∞ − ⟨Ĥxp⟩

)
dt

+ ℏω (⟨x̂⟩ −Dx)
(
1− γ

2λ

)√
λdWx

+ ℏω (⟨p̂⟩ −Dp)
(
1− γ

2λ

)√
λdWp.

(3.47)

When γ = 2λ, the stochastic terms vanish and Eq. (3.47) reduces to exponential cooling to the

ground state. See Fig. 3.3 for a comparison of how the energy evolves for a) γ = 2λ and b)

γ ̸= 2γ.

It is also instructive to look at the SDE’s for ⟨x̂⟩, ⟨p̂⟩, Dx and Dp (see Eq. (3.A41), with

parameters set as in the previous paragraph), which combine to give

dX = (−γX + ωP ) dt+

(√
λ− γ√

4λ

)
dWx,

dP = (−γP − ωX) dt+

(√
λ− γ√

4λ

)
dWp,

(3.48)

for the quantities X = ⟨x̂⟩ − Dx and P = ⟨p̂⟩ − Dp. The coefficient multiplying the Wiener

increments dWx and dWp reflects a trade-off between contributions from the noise on the sys-

tem’s dynamics due to measurements, and the noise on the detector outcome. The former is

proportional to
√
λ (Eq. (3.43)) reflecting the fact that increased measurement backaction leads

to increased noise; the latter is proportional to γ/
√
4λ (Eq. (3.44)), reflecting both the detector
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bandwidth γ, and the fact that the increased measurement strength λ leads to more precise (less

noisy) measurement outcomes. When γ = 2λ these contributions cancel in Eq. (3.48), and the

resulting deterministic equations have the asymptotic solution

X∞ = 0 , P∞ = 0. (3.49)

Eqs. (3.46) and (3.49) describe the ground state of a harmonic oscillator whose minimum is

located at the origin.

We emphasize that although in this section we assumed an initial Gaussian state for the sys-

tem, the derivations in previous sections did not impose this restriction: the asymptotic solutions

derived from the QFPME are independent of initial conditions.

3.5 Discussion

The results discussed in previous sections allow us to compare the three protocols on an

equal footing. Each protocol has strengths and weaknesses that will affect the protocol choice

for particular implementations. The level of control in the experiment plays a vital role in deter-

mining the success of this approach; the measurement operators and the range of values of the

parameters are the primary factors in deciding which protocol to use.

The optimal protocols discussed in the previous sections are summarized in Table 3.1. All

protocols can trap and cool down the particle for suitable choices of parameters. Protocol XP

can quickly cool the particle to the ground state if no trapping is necessary. Protocol C can trap

the particle close to the minimum uncertainty with a quadratic correction, as opposed to a linear

correction from Protocols X and XP (compare Eq. (3.30) to Eq. (3.13) and Eq (3.22), in their
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optimal conditions).

The physical implementation and range of parameters are essential to decide which pro-

tocol to use. Note that the frequency is the largest parameter for protocols X and XP, while for

protocol C, the bandwidth is the largest parameter. This can play an essential role in which pro-

tocols can be implemented. For Protocol X, measurement and feedback are performed in the

position basis. For Protocol XP, we require both measurement and feedback in both position and

momentum, and Protocol C requires measurement in position and feedback in momentum. In

experiments, the choice of protocols can also be affected by which observables can be measured.

Overall, if we measure only a single variable (position or momentum), then Protocol C

outperforms Protocol X for trapping; however, a larger separation of timescales is necessary

γ ≫ ω ≫ λγ/ω. If position and momentum measurements are feasible and there is no need for

trapping, then Protocol XP gives the best result for fast ground state cooling. In all protocols, if

the system is not isolated from a thermal environment, the cooling rate must be larger than the

thermal relaxation rate to mitigate the heating effects of the thermal bath.

3.6 Conclusion

We have studied cooling protocols using a recently derived framework for continuous mea-

surement and feedback. We applied the Quantum Fokker-Planck Master equation [1] to a quan-

tum harmonic oscillator that serves as a simple but relevant system for ground state cooling

techniques. Unlike previous studies on measured harmonic oscillators [142, 152], our model

includes a finite detector bandwidth, which has proven to be a central ingredient for achieving

ground state cooling.
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We focused our study on three different measurement schemes: position measurement (X),

position and momentum measurement (XP), and the cross-feedback protocol (C) which is related

to cold damping. We showed that Protocol XP yields better results for the cooling task, and

cooling can be done arbitrarily fast compared to a single measurement in position. Also, no

separation of timescale needs to be satisfied (other than γ ≫ Γ to avoid thermal excitation).

Our main results are analytical expressions for the asymptotic energy achieved by these

schemes and the emergence of optimum parameters to trap and cool the system. Feedback

schemes are usually complex to solve; thus, our framework uncovers some techniques and tools

that could be employed to solve more complicated systems. Future work will include an in-depth

study of the thermodynamics of the QFPME, more general feedback protocols, and possible ex-

perimental verification of results.

Another interesting avenue for investigation is the squeezing effect that can happen due

to continuous feedback [156]. Although this question is out of the scope of this chapter, it can

help answer the question of which interesting quantum states can be prepared using continuous

feedback.
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3A Feedback cooling in a classical oscillator

Here, we present details of the analysis of the classical model discussed in Sec. 3.2.1 of the

main text.

3A.1 Discrete time feedback

Letting (xk, pk) ≡ (x(k∆t), p(k∆t)) denote the particle’s state at stroboscopic times k∆t,

k = 0, 1, 2, . . . , the evolution from one step to the next is given by the linear map


xk+1

pk+1

 =


b+ (1− b) cos(ω∆t) sin(ω∆t)/mω

−mω(1− b) sin(ω∆t) cos(ω∆t)




xk

pk

 . (3.A1)

We assume ∆t is not an integer multiple of π/ω. The particle’s long-time evolution is determined

by the eigenvalues of the above matrix. When b < 1, the magnitudes of both eigenvalues are

smaller than unity, and the state vector (xk, pk) decays to the unique stationary state (0, 0) as k →

∞, i.e. the particle is cooled and trapped at the origin. When b > 1, one eigenvalue’s magnitude

exceeds unity, hence for generic initial conditions, both xk and pk diverge exponentially with k.

Finally, when b = 1, the matrix is easily diagonalized, and we obtain

xk → x∞ = x0 +
sin(ω∆t)

1− cos(ω∆t)

p0
mω

, pk → p∞ = 0 (3.A2)

as k →∞, thus the particle is cooled but not trapped at the origin.

80



3A.2 Continuous feedback

Defining ζ ≡ (x, p,Dx)
T and writing Eq. (3.2) as ζ̇ =Mζ , we see that the evolution of the

particle’s state (x, p) and its measured position Dx is governed by the matrix

M =



0 1/m 0

−mω2 0 mω2b

γ 0 −γ


. (3.A3)

When b < 1, all eigenvalues of M have strictly negative real parts, which implies that the system

evolves asymptotically to the state ζ∞ = (0, 0, 0), corresponding to cooling and trapping at the

origin. When b > 1, one of M ’s eigenvalues has a positive real part, producing exponential

divergence away from the origin; in this case, neither cooling nor trapping is achieved.

When b = 1, the eigenvalues of M are 0 and ±iΩ, where Ω =
√
ω2 − γ2/4. The explicit

solution of Eq. (3.2), for initial conditions (x0, p0, Dx0), is then:

p(t) = p0e
−γt/2 cos(Ωt) +

1

Ω

[γ
2
p0 −mω2(x0 −Dx0)

]
e−γt/2 sin(Ωt), (3.A4)

x(t) = x0 +
[ γp0
mω2

− (x0 −Dx0)
] (

1− e−γt/2 cos(Ωt)
)
+ (3.A5)[ p0

Ωmω2
(Ω2 − γ2/4) + γ

2Ω
(x0 −Dx0)

]
e−γt/2 sin(Ωt),

Dx(t) = Dx0 +
γp0
mω2

(
1− e−γt/2 cos(Ωt)

)
+
[
− γp0
2mω2

+ (x0 −Dx0)
] γ
Ω
e−γt/2 sin(Ωt).

(3.A6)

Asymptotically with time, (x(t→∞) = x∞, Dx(t→∞) = Dx,∞, p(t→∞) = p∞), this solu-
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tion gives

x∞, Dx,∞ = Dx0 +
γp0
mω2

, p∞ = 0. (3.A7)

Thus, the particle ends at rest at the bottom of the trap, but in general the trap is not located at the

origin.

3B QFPME with multiple measurements

Here, we outline the steps used to derive the QFPME for two continuous measurements,

Eq. (3.9). Similar steps hold for any finite number of measurements. This derivation is based on

the stochastic calculus section of Supplemental Material on Ref. [1] and Appendix B of Ref. [68].

We start with the Belavkin equation for two measurements [69, 88]

dρ̂c =−
i

ℏ

[
Ĥ, ρ̂c

]
dt+ λ1D[Â1]ρ̂cdt+ λ2D[Â2]ρ̂cdt+√

λ1{Â1 − ⟨Â1⟩, ρ̂c}dW1 +
√
λ2{Â2 − ⟨Â2⟩, ρ̂c}dW2,

(3.A8)

where ρ̂c is the density matrix conditioned on a particular stochastic trajectory for the outcome

variables D′
1,2. The operators Â1,2 are measurement operators, λ1,2 are the corresponding mea-

surement strengths, and ⟨Â1,2⟩ = Tr
(
Â1,2ρ̂c

)
are conditioned expected values. The stochastic

variables dW1,2 are Wiener processes that satisfy dWidWj = δijdt and E[dW1,2] = 0. For

brevity, we have suppressed the dependence of the Hamiltonian on the measurement outcomes

Ĥ = Ĥ(D
′
1, D

′
2) for the sake of notation. This equation is coupled to the evolution of the filtered

measurement outcomes

dD
′

i = γi

(
⟨Âi⟩ −D

′

i

)
dt+

γi√
4λi

dWi, i = 1, 2, (3.A9)
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where γ1,2 are the detector bandwidths.

We are interested in the joint distribution of the system density matrix and detector out-

comes ρ̂(D1, D2) = EW1,W2 [ρ̂cδ(D1 − D
′
1)δ(D2 − D

′
2)], where the average EW1,W2 [·] is taken

over the noisy variables W1,2. To obtain the equation of motion for this object, we use Ito’s rules

discussed in Sec. 1.5.3. Using these rules, we find that

d[ρ̂cδ(D1 −D
′

1)δ(D2 −D
′

2)] = dρ̂cδ(D
′

1 −D1)δ(D
′

2 −D2)

+ ρ̂cdδ(D
′

1 −D1)δ(D
′

2 −D2) + ρ̂cδ(D
′

1 −D1)dδ(D
′

2 −D2)

+ dρ̂cdδ(D
′

1 −D1)δ(D
′

2 −D2) + dρ̂cδ(D
′

1 −D1)dδ(D
′

2 −D2).

(3.A10)

Note that the term ρ̂cdδ(D
′
1−D1)dδ(D

′
2−D2) can be suppressed as it gives no contributionO(dt)

because E[dW1dW2] = 0. Now, one can use the identities in Eq. (2.29). Combining all these

equations and taking the ensemble average of measurement outcomes, we obtain the QFPME

with multiple measurements appearing in Eq. (3.9).
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3C Protocol X: Position Measurement

To solve for the asymptotic expectation value of Ĥx(D), we first use Eq. (3.11) to write a

set of coupled differential equations. In matrix form, these equations are:

∂t



ν1

ν2

ν3

ν4

ν5

ν6



=



−2γb 0 ω
2
−γb(b− 1) 0 0

0 0 −ω
2

0 0 0

−4ω 4ω −γb 0 2γb(1− b) 0

2γ 0 0 −γ ω γb(1− b)

0 0 γ
2

−ω −γ(1− b) 0

0 0 0 2γ 0 −2γ(1− b)





ν1

ν2

ν3

ν4

ν5

ν6



+



b2γ2

8λ

λ
2

0

− bγ2

4λ

0

γ2

4λ



,

(3.A11)
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where 

ν1

ν2

ν3

ν4

ν5

ν6



≡



⟨1
2
(x̂− bDx)

2⟩

⟨1
2
p̂2⟩

⟨p̂(x̂− bDx) + (x̂− bDx)p̂⟩

⟨(x̂− bDx)Dx⟩

⟨p̂Dx⟩

⟨D2
x⟩



. (3.A12)

Note that, for b = 1, the quantities (ν1, ν2, ν3) evolve under a closed system of equations. Later,

this is used to calculate the asymptotic energy when the system is connected to a thermal bath,

see Eq. (3.A36).

The matrix appearing in Eq. (3.A17) has six eigenvalues, but no closed-form solution for

arbitrary values of the parameters was obtained. However, in the limit b→ 1, the six eigenvalues

can be obtained, to first order in (1− b):

(
−2γ(1− b),−γ ±

√
γ2 − 4ω2 − 4γω2(1− b)

γ2 − 4ω2 ∓ γ
√
γ2 − 4ω2

, (3.A13)

−bγ,−γ
2
±
√
γ2

4
− ω2 +

2γω2(1− b)
γ2 − 4ω2 ±

√
γ2 − 4ω2

)
.

We also have the approximate solution for these six eigenvalues in the limit b→ 0:

(
−2γ +

2γω2b

γ2 + ω2
,±2iω ∓ iγωb

γ ± iω
,− γω2b

γ2 + ω2
,−γ ± iω ∓ iγωb

2(γ +∓iω)

)
. (3.A14)
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Note that all eigenvalues have negative real parts for b ≲ 1 and b ≳ 0; thus, the system converges.

We assume the system will converge for all values in the range 0 < b ≤ 1, similar to Protocol

XP.

Even though we don’t have a closed-form solution for the eigenvalues of the matrix in the

most general case, we can still find the analytical results for the fixed point of the dynamics,

ν⃗∞ =

(
bγ

16λ
− γλ

4ω2
+
λ(γ2 + ω2)

4bγω2
,
bγ

16λ
+
λ(γ2 + ω2)

4bγω2
,
λ

2ω
,
γλ

2bω2
,− λ

2bω
,
4γλ2 + bγω2

8b(1− b)λω2

)T

.

(3.A15)

The asymptotic energy and position variance results can be calculated directly from Eq. (3.A15),

⟨Ĥx⟩∞ = ℏω (ν1,∞ + ν2,∞) , (3.A16a)

⟨x̂2⟩∞ = 2ν1,∞ + 2bν2,∞ + b2ν4,∞. (3.A16b)

Here, νi,∞ for i = 1, . . . , 6, denotes the fixed point of the dynamics. Note that ⟨x̂2⟩∞ is equal to

the variance of position since these dynamics give ⟨x̂⟩∞ = 0 (for b < 1).

3D Protocol XP: Position and Momentum Measurements

To solve for the asymptotic expectation value of Ĥxp(D), we first use Eq. (3.20) to write

a set of evolution equations for ⟨Ĥxp(D)⟩ and quantities that couple to it. In matrix form, these
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equations are:

∂t



ν1

ν2

ν3

ν4



=



−2γb −γb(b− 1) 0 0

2γ −γ ω −γb(b− 1)

0 −ω −γ 0

0 2γ 0 2γ(b− 1)





ν1

ν2

ν3

ν4



+



b2 γ2

4λ

−bγ2

2λ

0

γ2

2λ



, (3.A17)

where 

ν1

ν2

ν3

ν4



≡



1
2
[⟨(p̂−Dp)

2⟩+ ⟨(x̂−Dx)
2⟩]

⟨(x̂− bDx)Dx + (p̂− bDp)Dp⟩

⟨(p̂− bDp)Dx− (x̂− bDx)Dp⟩

⟨D2
x +D2

p⟩



. (3.A18)

Note that if b = 1, the evolution of the average energy, described by ν1, follows a first-order

ODE. Thus, the average energy decays exponentially to its asymptotic value. The relaxation rate

in this case is given by 2γ.

The matrix appearing in Eq. (3.A17) has four eigenvalues:

−γ ± ∆±√
2
, (3.A19)

where ∆± =
√
−ω2 + γ2 ± Ω and Ω =

√
ω4 + 2 (1− 8b+ 8b2)ω2γ2 + γ4. These eigen-
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values, which determine relaxation rates, must be negative for the solution of Eq. (3.A17) to

converge. This condition sets the bounds 0 < b ≤ 1, as expected. The asymptotic solution for

the system can be found from the fixed point of the dynamics,

ν⃗∞ =

(
bγ

8λ
− γλ

2ω2
+
λ(γ2 + ω2)

2bγω2
,
γλ

bω2
,− λ

bω
,
4γλ2 + bγω2

4b(1− b)λω2

)T

. (3.A20)

The asymptotic energy and position variance results can be calculated directly from Eq. (3.A20),

⟨Ĥxp⟩∞ = ℏων1,∞, (3.A21a)

⟨x̂2⟩∞ = ν1,∞ + bν2,∞ +
b2

2
ν4,∞. (3.A21b)

Here, νi,∞ for i = 1, . . . , 4, denotes the fixed point of the dynamics.

Note that, to derive the equation for ⟨x̂2⟩∞, we explicitly assumed that ⟨x̂2⟩∞ = ⟨p̂2⟩∞ due

to the x ↔ p symmetry in the system. Also, recall that this protocol has a fixed point ⟨x̂⟩∞ = 0

(for b < 1), thus we can write σ2
x,∞ ≡ ⟨x̂2⟩∞ − ⟨x̂⟩2∞ = ⟨x̂2⟩∞.

3E Protocol C: Cross Feedback

To derive the results presented in Sec. (3.3.3) we first define a six-dimensional vector

ν⃗c = (ω
2
⟨x̂2⟩, ω

2
⟨p̂2⟩, ω

2
⟨(x̂p̂ + p̂x̂)⟩, ⟨Dxx̂⟩, ⟨Dxp̂⟩, ⟨D2

x⟩) to describe the dynamics of average

quantities of interest, as follows:

∂t ν⃗c(ω, γ, λ,Γ, t) = Mc(ω, γ, µ,Γ) ν⃗c(ω, γ, λ,Γ, t) + ν⃗s,c (ω, γ, λ,Γ), (3.A22)
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where

ν⃗s,c(ω, γ, λ,Γ) =

(
Γω(n̄+ 1/2)

2
,
ωλ

2
+

Γω(n̄+ 1/2)

2
, 0, 0, 0,

γ2

4λ

)T

, (3.A23)

and

Mc(ω, γ, µ, Γ) =



−Γ 0 ω −µω2 0 0

0 −Γ −ω 0 Γωµ
2

0

−2ω 2ω −Γ Γωµ
2

−µω2 0

2γ
ω

0 0 −γ − Γ
2

ω −µω

0 0 γ
ω

−ω −γ − Γ
2

Γµ
2

0 0 0 2γ 0 −2γ



. (3.A24)

It is generally complicated to solve Eq. (3.A22) for an arbitrary set of parameters. However,

one can obtain the asymptotic average energy in the case Γ = 0 by considering ∂t ν⃗c(ω, γ, λ, t→

∞) = 0. We then have

ν⃗c(ω, γ, λ, 0, t→∞) =

(
µω2

16λ
+
λ(γ2 + ω2)

4γ2µ
,
µω2

16λ
+
λ(γ2(1 + µ2)− γµω + ω2)

4γ2µ
,

λ

2
,
λ

2µω
,
λ

2
(− 1

γµ
+

1

ω
),
γ

8λ
+

λ

2µω

)T

. (3.A25)
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Using Eq. (3.A25), the asymptotic value for the average internal energy can be calculated using

the Hamiltonian in Eq. (3.6):

⟨Ĥc⟩∞ =
ℏω
2

[
µω

4λ
+

λ

µω
+

λ

2γ
+
λω

γ2µ
+
γµ2

8λ

]
(3.A26)

To get the timescale of the process, we need to solve for the eigenvalues of Eq. (3.A24).

That cannot be done analytically for arbitrary values of (ω, γ, λ, µ), but one can find the eigen-

values when µ → 0, which is the condition for ground state cooling. The six eigenvalues, up to

O(µ), are

(
− γ2ωµ

γ2 + ω2
,−γ − iω +

γωµ

2(γ + iω)
,−γ + iω +

γωµ

2(γ − iω)
, (3.A27)

−2γ +
2γ2ωµ

γ2 + ω2
,−2iω − γωµ

γ − iω
, 2iω − γωµ

γ + iω

)
.

If we assume γ ≫ ω ≫ λ, then the slowest timescale is ωµ, which in the optimal condition is

ωµ∗ = 2λ.

When the bath coupling is non-zero Γ ̸= 0, one can solve the same set of equations to find

the asymptotic average energy

⟨Ĥc⟩∞ =

ℏ


2µ3ω2γ3 + µ2ωγ2

[
4ω2 + Γ(2γ + Γ)

]
+

8µω2γλ2 + 4ωλ2
[
4ω2 + (2γ + Γ)2

]
+

8Γ
[
4ω2 + 4µωγ + γ2(4 + µ2) + 4γΓ + Γ2

]
λUth/ℏ


32µωγλ(γ + Γ) + 8λΓ [4ω2 + (2γ + Γ)2]

. (3.A28)
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Let’s assume that γ ≫ ω ≫ λγ/ω, µγ,Γγ/ω. In this case, Eq. (3.A28) becomes

⟨Ĥc⟩∞ =
µω
{

ℏω
2

[
λ
µω

+ µω
4λ

]}
+ ΓUth

µω + Γ
. (3.A29)

3E.1 Position spreading

To investigate the motion and trapping caused by the cross-feedback protocol, we need to

calculate the asymptotic position variance, σ2
x,∞ ≡ ⟨x̂2⟩∞ − ⟨x̂⟩2∞. From Eq. (3.A25) we have

⟨x̂2⟩∞ =
µω

8λ
+
λ(γ2 + ω2)

2γ2µω
. (3.A30)

We can determine ⟨x̂⟩∞ by solving the system of equations

∂t⟨x̂⟩ = ω (⟨p̂⟩ − µ⟨Dx⟩) , (3.A31)

∂t⟨p̂⟩ = −ω⟨x̂⟩, (3.A32)

∂t⟨Dx⟩ = γ (⟨x̂⟩ − ⟨Dx⟩) . (3.A33)

The asymptotic solution of this system of equations is:

⟨x̂⟩∞ = 0, ⟨p̂⟩∞ = 0, ⟨Dx⟩∞ = 0. (3.A34)

Combining both solutions, we conclude the asymptotic variance of the particle is

σ2
x,∞ =

µω

8λ
+
λ(γ2 + ω2)

2γ2µω
. (3.A35)
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3F Thermal coupling

Here, we present the results for the asymptotic average energy for Protocols X and XP in

the simplest case of b = 1. Using this simplification, the equations for the asymptotic energy

are more symmetrical and easier to solve. We will re-derive the equations as they differ from the

previous sections.

When focusing on cooling, the average energy for Protocol X evolves under the following

system of linearly coupled differential equations:

∂t⟨V̂ ⟩ =
ℏω2

2
⟨Ĝ⟩ − 2γ⟨V̂ ⟩+ ℏωγ2

8λ
− Γ⟨V̂ ⟩+ Γ

ℏω
2
(n̄+ 1/2), (3.A36a)

∂t⟨K̂⟩ = −
ℏω2

2
⟨Ĝ⟩+ ℏωλ

2
− Γ⟨K̂⟩+ Γ

ℏω
2
(n̄+ 1/2), (3.A36b)

∂t⟨Ĝ⟩ =
4

ℏ
⟨K̂⟩ − 4

ℏ
⟨V̂ ⟩ − γ⟨Ĝ⟩ − Γ⟨Ĝ⟩, (3.A36c)

∂t⟨Ĥx⟩ =
ℏωλ
2

+
ℏωγ2

8λ
− 2γ⟨V̂ ⟩ − Γ⟨Ĥx⟩+ Γℏω(n̄+ 1/2), (3.A36d)

where V̂ = ℏω(x̂ −Dx)
2/2, K̂ = ℏωp̂2/2 and Ĝ = (x̂−Dx) p̂ + p̂ (x̂−Dx). This system can

be obtained from Eqs. (3.10), (3.11) and (3.36).

When Γ ̸= 0, the asymptotic energy relaxes to

⟨Ĥx⟩Γ =
⟨Ĥx⟩∞ [4ω2γ + γΓ(γ + Γ)] + Uth [4ω

2Γ + Γ(γ + Γ)2] + ℏωλγΓ
[
1− γ(γ+Γ)

4ω2

]
4ω2(γ + Γ) + (γ + Γ)(2γ + Γ)Γ

,

(3.A37)

with Uth given by (3.35), and ⟨Ĥx⟩∞ given by Eq. (3.12) with b = 1.

We can proceed similarly for Protocol XP. One can use Eqs. (3.20) and (3.37) to write down

a system of linearly coupled ODEs for relevant expectation values. For simplicity, we set b = 1,
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λx = λp = λ and γx = γp = γ, obtaining

∂t⟨V̂ ⟩ =
ℏω2

2
⟨Ĝ⟩ − 2γ⟨V̂ ⟩+ ℏωλ

2
+

ℏωγ2

8λ
+ Γ

(
Uth/2− ⟨V̂ ⟩

)
, (3.A38a)

∂t⟨K̂⟩ = −
ℏω2

2
⟨Ĝ⟩ − 2γ⟨K̂⟩+ ℏωλ

2
+

ℏωγ2

8λ
+ Γ

(
Uth/2− ⟨K̂⟩

)
, (3.A38b)

∂t⟨Ĝ⟩ =
4

ℏ
⟨K̂⟩ − 4

ℏ
⟨V̂ ⟩ − 2γ⟨Ĝ⟩ − Γ⟨Ĝ⟩, (3.A38c)

∂t⟨Ĥxp⟩ = (2γ + Γ)

[
2γ⟨Ĥxp⟩∞ + ΓUth

2γ + Γ
− ⟨Ĥxp⟩

]
. (3.A38d)

Here, ⟨Ĥxp⟩xp is given by Eq. (3.21) with b = 1, Uth is the thermal energy the system would

relax to in the absence of measurement and feedback, see Eq. (3.35); ⟨K̂⟩ = (ℏω/2)⟨(p̂−Dp)
2⟩;

⟨V̂ ⟩ = (ℏω/2)⟨(x̂−Dx)
2⟩; and ⟨Ĝ⟩ = ⟨(x̂−Dx)(p̂−Dp)+(p̂−Dp)(x̂−Dx)⟩. From Eq. (3.A38),

we obtain the asymptotic value of the average energy:

⟨Ĥxp⟩Γ =
2γ⟨Ĥxp⟩∞ + ΓUth

2γ + Γ
. (3.A39)

3G Trajectory simulation

Suppose one starts from the Belavkin equation in Eq. (3.43) and writes the time evolution

of the expectation value of powers of position or momentum (⟨x̂⟩, ⟨x̂2⟩, ⟨p̂⟩, ⟨p̂2⟩, etc). These

equations form a non-closing system because the evolution of the n−th power depends on the

(n + 1)−th power. However, using the Gaussian wave packet assumption [69, 81, 160] one can
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derive the following relations:

⟨x̂3⟩ = ⟨x̂⟩3 + 3⟨x̂⟩Vx, (3.A40a)

⟨p̂3⟩ = ⟨p̂⟩3 + 3⟨p̂⟩Vp, (3.A40b)

⟨x̂p̂2 + p̂2x̂⟩ = 2⟨x̂⟩⟨p̂2⟩+ 2⟨p⟩C, (3.A40c)

⟨x̂2p̂+ p̂x̂2⟩ = 2⟨x̂2⟩⟨p̂⟩+ 2⟨x̂⟩C. (3.A40d)

Here Vx = ⟨x̂2⟩ − ⟨x̂⟩2, Vp = ⟨p̂2⟩ − ⟨p̂⟩2 and C = ⟨x̂p̂+ p̂x̂⟩ − 2⟨x̂⟩⟨p̂⟩. Using this assumption,

one can close the system of equations and arrive at the following coupled ordinary stochastic

differential system of equations [131]:

d⟨x̂⟩ = ω (⟨p̂⟩ − bxDx − bpDp) dt+ 2
√
λxVxdWx +

√
λpCdWp, (3.A41a)

d⟨p̂⟩ = −ω (⟨x̂⟩ − cxDx − cpDp) dt+
√
λxCdWx + 2

√
λpVpdWp, (3.A41b)

dVx = (ωC + λp − 4λxV
2
x − λpC2)dt, (3.A41c)

dVp = (−ωC + λx − 4λpV
2
p − λxC2)dt, (3.A41d)

dC = [2ωVp − 2ωVx − 4 (λxVx + λpVp)C] dt, (3.A41e)

dDx = γx (⟨x̂⟩ −Dx) dt+
γx√
4λx

dWx, (3.A41f)

dDp = γp (⟨p̂⟩ −Dp) dt+
γp√
4λx

dWp. (3.A41g)

The equation for dDx and dDp follows from the exponential filtering described in Eq. (3.A9).

This system can be solved numerically using standard algorithms for solving stochastic differ-

ential equations. From this solution we can calculate the energy at all times along the trajectory

94



using Eq. (3.45):

⟨Ĥ⟩ = ℏω
2

[
Vx + (⟨x̂⟩ − cxDx − cpDp)

2 + Vp + (⟨p̂⟩ − bxDx − bpDp)
2] . (3.A42)

Note that Eqs. (3.A41c, 3.A41d, 3.A41e) are deterministic, and if λx = λp = λ they reach

symmetric asymptotic values

(Vx)∞ =
1

2
, (Vp)∞ =

1

2
, C∞ = 0. (3.A43)
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Chapter 4: Quantum Fokker-Planck Master Equation with general filtering

This chapter is based on work done in collaboration with Björn Annby-Andersson and

Christopher Jarzynski, manuscript currently in preparation [5]. My contribution to this work was

to derive the master equations and apply them to the quantum harmonic toy model.

The goal of this chapter is to extend the Quantum Fokker-Planck Master Equation (QF-

PME) [1–3] to the case where the experiment has a generic filtering spectrum. The results include

master equations for a chain of low-pass filters, a band-pass filter, and a generic filter described

by an ODE. Finally, the master equations are applied to cooling a quantum harmonic oscillator,

similar to the results presented in Chapter 3.

4.1 Introduction

Recent years have seen an increase in interest in quantum feedback systems, quantum mea-

surements, and, more broadly, quantum control [127, 161–163]. Experiments have reached the

point where atoms can be trapped and controlled, single photons can be measured, the coher-

ence time for quantum systems has been increasing, and many other advances have been made

[19, 164–168]. This advancement has important applications in quantum sensing and quantum

computing [37, 96, 169–173].

On the theoretical side, much research has been done to understand feedback systems and
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their flux of information, and to design protocols to implement nano-machines [1, 2, 56, 65, 68,

80, 174–176]. The area of quantum thermodynamics has also drawn much attention to extend the

questions of classical thermodynamics in the quantum regime [42, 177–180]. The goal is to be

able to control and drive quantum systems to produce valuable outcomes [181–185].

In this chapter, I investigate continuous feedback in quantum systems and generalize results

of previous works [1, 3] (see Chapter 3) by studying a larger class of filtering protocols. The goal

is to develop theoretical models representing realistic experimental conditions, including finite

bandwidth effects, lag, and information processing for feedback [186–188].

The results show a promising avenue for the theoretical modeling of continuous feedback.

I derived a general formulation of the QFPME [1] with arbitrary signal processing and applied

it to the study of cooling a quantum harmonic oscillator [3]. The results indicate that one can

describe feedback systems using Markovian dynamics, even when the filters contain complicated

frequency dependence. This is due to an increase in the system’s dimensionality, similar to a

Markovian embedding [189–192].

The chapter is structured as follows: Sec. 4.2 extends the framework to the case of multiple

low-pass filters. Section 4.3 presents the QFPME using a band-pass filter, and Sec. 4.4 generalizes

for an arbitrary continuous filter. We apply these different filters to a quantum harmonic oscillator

in Sec. 4.5. A discussion and conclusions are presented in Sec. 4.6.

4.2 QFPME with multiple low-pass filters

This section will sketch the steps to derive QFPME with multiple low-pass filters — for

a discussion on the original QFPME, see Secs. 2.4 and 3.2.3. The strategy for this derivation
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follows the stochastic calculus section of Supplemental Material on Ref.[1] and the Appendix of

Ref. [3] (see Chapter 3 Appendix 3B).

We start with the Belavkin equation for a continuous measurement [66, 67, 86–88]

dρ̂c =
−i
ℏ
[Ĥ, ρ̂c]dt+ λD[Â]ρ̂cdt+

√
λdW{Â− ⟨Â⟩, ρ̂c}. (4.1)

Here, ρ̂c denotes the density matrix conditioned to observing the measured signal z(t). The

parameter λ characterizes the measurement strength, and controls how much backaction is caused

in the system; the superoperator D[ĉ]ρ̂ = ĉρ̂ĉ† − 1
2
ĉĉ†ρ̂ − 1

2
ρ̂ĉĉ† is called dissipator. The last

term of the right-hand side of Eq. (4.1) contains the stochastic evolution; dW is the stochastic

Weiner increment that satisfies dW 2 = dt; ⟨Â⟩ = tr
[
Âρ̂c

]
is the expected value of the measured

operator, where {·, ·} is the anticommutator.

The measurement outcome associated with the evolution of Eq. (4.1) is given by the signal

z(t) in Eq. (2.20). Here, we will imagine that the experimental apparatus comprises n filters,

where the first one is denoted by D1 and defined by Eq. (2.24) and the next ones are labeled Dk,

where k = 2, . . . , n. A low-pass filter models each additional filter

D′
k(t) = γk

∫ t

−∞
dse−γk(t−s)D′

k−1(s), k ≥ 2 (4.2)

dD′
k = γk

(
D′

k−1 −D′
k

)
dt. (4.3)

The parameters {γk}, represent the experimental bandwidth of the filters. This framework aims

to model experiments composed of various pieces of equipment, where the output of a given layer

is the input of the next one, see Fig 4.1. After all layers of filtering are taken into account, we can
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Figure 4.1: a) Single-filter feedback scheme: the outcome of the continuous measurement is
processed by a single component. The Hamiltonian directly uses the signal D1(t) to perform
feedback Ĥ = Ĥ(D1(t)); b) Multiple-filter feedback scheme: multiple components add finite
bandwidths to the system, and the final feedback can use all signals to change the Hamiltonian
Ĥ = Ĥ(D′(t)).

apply time-dependent feedback by changing the Hamiltonian in terms of these delayed signals

Ĥ = Ĥ(D′(t)), where D′ = (D′
1, . . . , D

′
n) represents the set of all filters.

The quantity we are interested in is

ρ̂(D) = EW

[
ρ̂cδ

n∏
k=1

δ
(
D

′

k −Dk

)]
, (4.4)

which is an average over possible trajectories that yields the same measurement outcomes at a

given time. The object described by Eq. (4.4) is a joint distribution that contains information

about the quantum density matrix and the probability of observing a particular measurement

outcome D at time t.

To derive the master equation for the time evolution of Eq. (4.4), we need to use the stochas-

tic rules of calculus in the Ito formalism [Eqs. (1.43,1.44)]. We can combine Eqs. (1.43,1.44,
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2.25, 4.1–4.4) to derive the QFPME with multiple low-pass filters:

∂tρ̂(D) =
−i
ℏ

[
Ĥ(D), ρ̂(D)

]
+ λD[Â]ρ̂(D)− γ1

2
∂D1{Â−D1, ρ̂(D)}

−
n∑

k=2

γk∂Dk
[(Dk−1 −Dk)ρ̂(D)] +

γ2

8λ
∂2D1

ρ̂(D).

(4.5)

Equation (4.5) has a Fokker-Planck-like form, similar to Eq. (2.30). The generalized drift repre-

sents the relaxation of the k′th filter with its characteristic bandwidth γk. The only diffusive term

in Eq. (4.5) is the signal D1. This happens because all the other signals evolve deterministically

toward one another. In contrast, the first signal evolves under an OU process towards the mea-

sured operator expectation value. In the next section, we will explore the case where the filtering

is implemented using a band-pass filter instead of multiple low-pass filters.

4.3 QFPME with Band-pass filtering

We can construct the QFPME with a band-pass filter by changing the form of the filtering

operation in Eq. (2.24). There are multiple ways to implement a band-pass filter, i.e. a filter that

only allows signals in an intermediate range of frequencies in the spectral domain. Here, we will

focus on a particular realization of band-pass that takes the form of a Lorentzian function in the

Fourier domain. This filter can be written as a frequency shift of the exponential low-pass filter

in Eq. (2.24),

E ′
1(t) = γ

∫ t

−∞
dse−γ(t−s) cos (Ω(t− s))z(s). (4.6)
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However, the signal in Eq. (4.6) obeys a second-order equation, so we need to define an auxiliary

signal E2(t)
′:

E ′
2(t) = γ

∫ t

−∞
dse−γ(t−s) sin (Ω(t− s))z(s). (4.7)

The following system of equations couples the two signals that form the band-pass filter:

dE ′
1 = γ (z − E ′

1) dt− ΩE ′
2dt, (4.8)

dE ′
2 = (ΩE ′

1 − γE ′
2) dt. (4.9)

Following the same steps we took to derive Eq. (4.5) in Sec. 4.2, we use Eqs. (4.8,4.9) to

derive a QFPME with band-pass filter:

∂tρ̂(E) =
−i
ℏ

[
Ĥ(E), ρ̂(E)

]
+ λD[Â]ρ̂(E)

− ∂E1

[
1

2

{
γÂ− γE1 − ΩE2, ρ̂(E)

}]
− ∂E2 [(ΩE1 − γE2)ρ̂(E)] +

γ2

8λ
∂2E1

ρ̂(E),

(4.10)

where E = (E1, E2). The evolution of the signals (E1(t), E2(t)) is captured by the drift term in

Eq. (4.10) and the diffusion is only present in E1 because it is the one that has a stochastic term

from the measurement outcome z(t).
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4.4 QFPME with general filtering

4.4.1 General analytical filtering

Motivated by the construction in Sec. 4.3, we can write how the QFPME changes when we

use a general filter of the form

F ′
1(t) =

∫ t

−∞
dsf(t− s)z(s). (4.11)

The function f(t) is the filter kernel. We consider the case where f(t) obeys a finite ODE

f (n)(t) + an−1f
(n−1)(t) + · · ·+ a0f(t) = 0. (4.12)

The low-pass filter considered in Sec. 2.4 obeys a first-order ODE, and the band-pass filter con-

sidered in Sec. 4.3 obeys a second-order ODE.

To solve for the QFPME associated with the filter in Eq. (4.11), we need to define n − 1

auxiliary signals

F ′
k+1 =

∫ t

−∞
dsf (k)(t− s)z(s), k ≤ n. (4.13)

These signals evolve under the following coupled ODE:

dF ′
1 = f(0)z(t)dt+ F ′

2dt (4.14a)

dF ′
k+1 = f (k)(0)z(t)dt+ F ′

k+2dt (4.14b)

dF ′
n = f (n−1)(0)z(t)dt−

n∑
j=1

aj−1F
′
jdt. (4.14c)
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Combining Eqs. (4.1,4.14) we have the following QFPME:

∂tρ̂(F) =
−i
ℏ

[
Ĥ(F), ρ̂(F)

]
+ λD[Â]ρ̂(F)

−
n−1∑
j=1

∂Fj

[
1

2

{
f (j−1)(0)Â+ Fj+1, ρ̂(F)

}]
− ∂Fn

[
1

2

{
fn−1(0)Â−

n∑
k=1

ak−1Fk, ρ̂(F)

}]

+
n∑

j=1

n∑
k=1

f (j−1)(0)f (k−1)(0)

8λ
∂Fj

∂Fk
ρ̂(F),

(4.15)

where F = (F1, F2, . . . , Fn). The drift terms describe the deterministic evolution of each signal,

where the final signal is given by the ODE that defines the filter. The second derivative can

contain cross terms depending on how many signals have stochastic evolution in Eq. (4.14).

The general filtering in Eq. (4.11) can be mapped to the classical PID controller using:



P : f(t− s) ∝ δ(t− s)

I : f(t− s) ∝ 1

D : f(t− s) ∝ δ′(t− s)

(4.16)

The low-pass filter used in the original derivation of the QFPME can be translated into the integral

gain in the limit where

lim
γ→0

(D/γ)⇒ Integral gain. (4.17)

Inspired by the system in Eq. (4.14), we take the final step to generalize the QFPME to an

arbitrary system of coupled signals that can describe any general filter or sequence of filters for a

single measurement.
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4.4.2 General signals

Consider a system of coupled signals that evolve under the following ODE:

dG′
k = bkz(t)dt+

n∑
j=1

MkjG
′
jdt, k = 1, . . . , n (4.18)

The matrix M and the vector b = (b1, . . . , n) specify the model and can describe all previous

cases (see Appendix 4B). The QFPME corresponding to Eq. (4.18) is

∂tρ̂(G) =
−i
ℏ

[
Ĥ(G), ρ̂(G)

]
+ λD[Â]ρ̂(G)

−
n∑

k=1

∂Gk

[
1

2

{
bkÂ+

n∑
j

MkjGj, ρ̂(G)

}]
+

n∑
j=1

n∑
k=1

bjbk
8λ

∂Gj
∂Gk

ρ̂(G).

(4.19)

See Appendix 4A for a derivation of Eq. (4.19). In the remainder of the chapter, I apply the

QFPME with multiple low-pass filters and the QFPME with a band-pass filter to an analytically

solvable model.

4.5 Harmonic oscillator

This section focuses on applying the QFPME with multiple filters to the toy model used in

Chapter 3. We discuss some of the results derived in Chapter 3 for completeness. See Appendix

4C for details on deriving the results presented in this section.
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4.5.1 One layer of filtering

Consider a quantum harmonic oscillator (QHO) of mass m and characteristic frequency ω

undergoing continuous measurement and feedback. Introducing dimensionless operators p̂ →

p̂
√
ℏmω and x̂→ x̂

√
ℏ/mω, the Hamiltonian in the absence of feedback becomes

Ĥ0 =
ℏω
2

(
p̂2 + x̂2

)
. (4.20)

Ĥ1(D1) =
ℏω
2

[
(p̂−Dp,1)

2 + (x̂−Dx,1)
2] , (4.21)

where D1 = (Dx,1, Dp.1). This protocol can achieve cooling because the signalDi,1 with i = x, p

represents a guess on the particle’s position and momentum. The Hamiltonian is then moved to

this position to decrease the particle’s potential.

As shown in Eq. (3.21), the average energy evolves by the following equation

∂t⟨Ĥ1⟩+ 2γ⟨Ĥ1⟩ = 2γ⟨Ĥ1⟩∞, (4.22)

where

⟨Ĥ1⟩∞ ≡ lim
t→∞
⟨Ĥ1⟩ =

ℏω
2

(
λ

γ
+

γ

4λ

)
. (4.23)

This simple protocol can cool down the particle to ground state if we choose the parameters

γ = 2λ. In this case, we have

⟨Ĥ1⟩∞ =
ℏω
2
. (4.24)
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4.5.2 Two layers of filtering

Here, we will focus on the feedback Hamiltonian given by

Ĥ2(D2) =
ℏω
2

[
(p̂−Dp,2)

2 + (x̂−Dx,2)
2] . (4.25)

This means the Hamiltonian is changed instantaneously based on a double filtered signal Dx/p,2.

The filtering frequencies are γ and Ω, see Eqs. (2.24) and (4.6). For the sake of notation, let’s

denote U2 ≡ ⟨Ĥ2(D2)⟩.

Using Eqs. (4.5) and (4.25), we can write a single ordinary differential equation for the

average energy of the double-filtered protocol:

∂4tU2 + 4(Ω + γ)∂3tU2 + [4Ωγ + 5(Ω + γ)2 + ω2]∂2tU2

+ 2(Ω + γ)[4Ωγ + (Ω + γ)2 + ω2]∂tU2 + 4Ωγ(Ω + γ)2[U2 − U2,∞] = 0,

(4.26)

where

U2,∞ =
ℏω
2

[
λ

γ̃
+

γ̃

4λ
+

λ

(Ω + γ)
+

λω2

γ̃(Ω + γ)2

]
, (4.27)

and

1

γ̃
=

1

γ
+

1

Ω
(4.28)

is the effective frequency of the filter. The asymptotic solution for the average energy that evolves

under Eq. (4.26) is given by

⟨Ĥ2⟩∞ = lim
t→∞

U2 = U2,∞. (4.29)

One can recover the results of the single filtered protocol in the limit Ω≫ γ. In this regime,
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the evolution of the average energy in Eq. (4.26) can be written in the following form:

5

2Ω
∂2tU2 +

(
1 +

5γ

Ω

)
∂tU2 +

(
2γ +

4γ2

Ω

)
U2 = ℏω

(
λ+

γ2

4λ

)
+

ℏω
Ω

(
4γλ+

γ3

4λ

)
. (4.30)

In this limit, the system will relax to the following asymptotic energy

⟨Ĥ2⟩∞ =
ℏω
2

(
λ

γ
+

γ

4λ

)
+

ℏω
Ω

(
λ− γ2

8λ

)
. (4.31)

Note that the Eqs. (4.30) and (4.31) are equal to the Eqs. (4.22) and (4.23), respectively, up to

zeroth order in 1/Ω.

While Eq. (4.27) reveals that no choice of parameters achieves ground state cooling, we can

use Eq. (4.31) to cool down the particle to a lower energy than the single layer of filter protocol

if our small correction is negative. The first order correction of Eq. (4.31) is negative if

γ

λ
> 2
√
2. (4.32)

These results show an interesting feature of this system. We can achieve better cooling

by introducing another filtering layer on top of the original noisy signal if the parameters γ and

λ satisfy Eq. (4.32). We will discuss the experimental consequences of this result in the next

sections.
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4.5.3 Three layers of filtering

Here, we will focus on the feedback Hamiltonian given by

Ĥ3(D3) =
ℏω
2

[
(p̂−Dp,3)

2 + (x̂−Dx,3)
2] . (4.33)

Now, having three layers of filtering, the system of equations necessary to solve for the energy

is substantially more complex (see Appendix 4C). We have nine linearly coupled equations to

solve, so we will only focus on the asymptotic energy.

The asymptotic energy for cooling protocol with three layers of filtering is given by

⟨Ĥ3⟩∞ =

ℏω
2



8λ2Ω3(ω2 + Ω2)2 + 8γλ2Ω2(3ω4 + 7ω2Ω2 + 8Ω4)

+γ5[Ω4 + 4λ2(ω2 + 5Ω2)] + 2γ4[2Ω5 + λ2(9ω2Ω + 48Ω3)]

+γ3[5Ω6 + 4λ2(ω4 + 10ω2Ω2 + 45Ω4)]

+2γ2[Ω7 + λ2(9ω4Ω + 31ω2Ω3 + 80Ω5)]



2γλΩ2

4γ4Ω− 4ω2Ω3 + 4Ω5 − 2γ3(ω2 − 8Ω2) + γ2(−9ω2Ω + 24Ω3)

+4γ(−3ω2Ω2 + 4Ω4)


.

(4.34)

Because the system is hard to solve analytically, I don’t have the exact solution for which choices

of parameters (ω, γ, λ,Ω) allow for the system to relax to the solution in Eq. (4.34). However, if

we focus in the limit Ω≫ ω, γ, λ, we expect the solution to be close to the single-layer protocol.
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Figure 4.2: Phase diagram indicating which protocol is able to cool down the particle to the
lowest energy for a given value of (γ,Ω). Each region indicates which protocol yields the lowest
energy using Eqs. (4.23,4.27,4.34). The vertical dashed lines indicate the transition regions where
the second protocol is the coldest for 2

√
2 < γ/λ < 4, and where the third protocol is the coldest

for γ/λ > 4 [see Eq. (4.37)].

In the limit Ω→∞ we get

⟨Ĥ3⟩∞ =
ℏω
2

(
λ

γ
+

γ

4λ

)
+

ℏω
Ω

(
2λ− 3γ2

16λ

)
. (4.35)

Note that this protocol yields lower asymptotic energy than the single-layer protocol in Eq. (4.23),

if

γ

λ
> 2

√
8

3
λ. (4.36)

When we combine Eqs. (4.31) and (4.35), we can solve for which regions of the parameter
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space (γ, λ) we get better cooling with each of the three protocols:

Ω→∞ :



γ/λ ≤ 2
√
2 : min(⟨Ĥ1,2,3⟩∞) = ⟨Ĥ1⟩∞

2
√
2 < γ/λ ≤ 4 : min(⟨Ĥ1,2,3⟩∞) = ⟨Ĥ2⟩∞

γ/λ > 4 : min(⟨Ĥ1,2,3⟩∞) = ⟨Ĥ3⟩∞

(4.37)

Using the table in Eq. (4.37), one can design the experiment to artificially filter the measurement

signal and apply feedback based on a n−filtered signal. This cleaner signal can yield better

cooling if the parameters γ/λ cannot be controlled easily.

4.5.4 Multiple layers of filtering

As we can see from the analytical results in Eq. (4.27) and Eq. (4.34), the complexity of

the equations increases as we add more layers of signal filter to apply feedback. For n > 3, we

don’t have analytical results for the asymptotic energy after cooling. However, using trajectory

simulations, we can probe the asymptotic energy in the limit of Ω → ∞. Define the separation

of the timescale correction function

αn(γ, λ) ≡
Ω

λ
lim
Ω→∞

(
⟨Ĥn⟩∞ − ⟨Ĥ1⟩∞

ℏω

)
. (4.38)

We have the exact form of these functions for n = 2, 3:

α2(γ, λ) = 1− γ2

8λ2
, (4.39)

α3(γ, λ) = 2− 3γ2

16λ2
. (4.40)
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Figure 4.3: Separation of timescale correction function αn plotted for various values of γ2/λ2.
The mean value of the correction function for N = 5000 trajectories agrees with the analytical
expressions in Eqs. (4.39,4.40) within statistical error (Standard Error of the Mean).

In Fig. 4.3, we show the result of the ensemble of stochastic trajectories simulation. Note

that the numerical solution for αn(γ, λ) matches Eqs. (4.39) and (4.40). For n > 3, the functions

obey the same pattern: a linear decreasing function in γ2/λ2. This numerical result extends

Eq. (4.37), and experimentalists can use it to design artificial filters that can improve the overall

cooling efficiency of the protocol.

4.5.5 Band-pass filter

A similar analysis can be done using the band-pass filter master equation in (4.10) with a

protocol given by

Ĥ(E1) =
ℏω
2

[
(p̂− Ep,1)

2 + (x̂− Ex,1)
2
]
. (4.41)
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Figure 4.4: Asymptotic normalized energy for cooling a quantum harmonic oscillator using a
band-pass filtering process. Equation (4.41) is plotted as a function of Ω/γ. For larger values of
Ω/γ, the energy diverges and then takes unphysical values (not shown).

The lack of symmetries in the equations of motion for this system (see Appendix 4C) makes

its solution hard to interpret. The asymptotic ensemble energy for the cooling of a quantum

harmonic oscillator with band-pass filtering is

⟨Ĥ(E1)⟩∞ =
ℏω
2

(
λ

γ
+

γ

4λ

)[
1 +

Ω2

ω2

(4γ2 − ω2 + 4Ω2)

(4γ2 + ω2 − 4Ω2)

]
+

ℏω
2

γΩ2(3ω2 − 4γ2 − 4Ω2)

4λω2(4γ2 + ω2 − 4Ω2)
.

(4.42)

It is intuitive to see that the lowest order of contribution is Ω2 when Ω → 0, because

cosΩ(t− s) ≈ 1−Ω2(t−s)2/2 in Eq. (4.6). I couldn’t solve for the conditions on the parameters

(ω, γ, λ,Ω) for the system of equations to converge. However, it is not hard to check that for

very large values of Ω, Eq. (4.41) can yield unphysical values, namely ⟨Ĥ(E1)⟩∞ ≤ ℏω/2. In

Figure 4.4, one can check that all curves diverge for Ω/γ ≈ 1, and for larger values of Ω/γ, the

112



energy has negative values (not included in the plot).

4.6 Discussion and concluding remarks

In this chapter, we extended the results derived by Annby-Andersson in [1] by considering

general filtering of the measurement outcome signal. The special cases of low-pass and band-

pass filters are considered and applied to the same toy model used in Chapter 3. Analytical results

were derived and discussed in detail.

The results presented in Sec. 4.5 show a promising avenue for experiment design. The an-

alytical results show that adding a low-pass filter can have a non-trivial influence on the system’s

cooling capacity. The amount of cooling is controlled by the ratio γ/λ. This parameter represents

the ratio of how fast information can be processed divided by how much information is collected.

The optimal condition happens at γ/λ = 2, and the single-layer protocol can yield ground-state

cooling. As we increase the ratio γ/λ, the stochastic term in Eq. (2.25) increases in magnitude,

and less noise is filtered. Thus, adding another low-pass filter, or more generally, modifying the

spectral properties of the filter, can yield a more precise application of the protocol.

By increasing the parameter space of the model, here done by adding more layers of fil-

tering to the QFPME, I showed that one can derive interesting phase diagrams that represent

situations where the protocol is applied with better cooling results. This parameter-space in-

crease can be a powerful tool for experimentalists who can use the analytical/numerical solution

of the QFPME to choose regimes of operations and parameters to enhance the performance of

quantum feedback protocols.

Finally, this chapter also derives a general form of the QFPME that can be used to model
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more precisely the complex structure of an experiment’s information processing and measure-

ment protocol. The aim is to have ways for experimentalists to describe the exact spectral prop-

erties of their signals using the QFPME with general filters and, in doing so, have a powerful

theoretical tool to simulate the evolution of their feedback system. The analytical strategies used

in this chapter can also help derive exact results for asymptotic solutions for the expectation val-

ues of important quantities of the system. For quadratic Hamiltonians, it is possible to close

the equations of motion and get a simple set of equations whose solution describes the quantum

system’s energy, position, and momentum.

I hope the results presented here motivate using master equations to study experimental im-

plementations of continuous quantum feedback systems. These systems were historically studied

using stochastic equations. Here, I present the general theory and particular examples that illus-

trate how much information can be gained by focusing on ensemble averages over many trajec-

tories of the experiment. In some cases, it is possible to use the ensemble picture to optimize the

experiment’s parameters and obtain non-trivial conditions where the protocol is enhanced.
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4A Deriving the general QFPME

Here, I will derive the most general form of the QFPME in Eq. (4.19). The setup is similar

to the previous derivation outlined in Sec. 2.4. The stochastic equations that one needs to consider

are the Belavkin equation and the general SDE for the filters:

dρ̂ =
−i
ℏ

[
Ĥ(G), ρ̂

]
dt+ λD[Â]ρ̂ dt+

√
λ dW {Â− ⟨Â⟩, ρ̂} (4.A1)

dG′
k = bk

(
⟨Â⟩+ 1√

4λ

dW

dt

)
dt+

n∑
j=1

MkjG
′
jdt, k = 1, . . . , n. (4.A2)

Here, the matrix M and the vector b fully specify the model of the filter. See Appendix 4B for a

discussion on how to model the low-pass and band-pass filters using this convention.

The object one needs to focus on to derive the general QFPME is the joint distribution over

the trajectories (realizations of the stochastic variable dW ) that are consistent with the measure-

ment outcome G(t) = (G1(t), . . . , Gn(t)):

ρ̂(G, t) = EW

[
ρ̂(t)

n∏
k=1

δ(G
′

k(t)−Gk)

]
. (4.A3)
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The infinitesimal evolution of Eq. (4.A3) can be calculated using Ito’s rule of stochastic calculus:

dρ̂ (G) = EW

[
dρ̂

n∏
k=1

δ(G
′

k(t)−Gk) + ρ̂
∑
k

dδ(G
′

k(t)−Gk)
n∏

j ̸=k

δ(G
′

j(t)−Gj)+

dρ̂
∑
k

dδ(G
′

k(t)−Gk)
n∏

j ̸=k

δ(G
′

j(t)−Gj)+

ρ̂
∑
k

∑
j ̸=k

dδ(G
′

k(t)−Gk)dδ(G
′

j(t)−Gj)
n∏

i ̸=k,j

δ(G
′

i(t)−Gi)

] (4.A4)

dρ̂ (G) = EW

[
−i
ℏ

[
Ĥ(G), ρ̂(G)

]
dt+ λD[Â]ρ̂(G) dt+

√
λ dW {Â− ⟨Â⟩, ρ̂(G)} +

ρ̂

n∑
k=1

δ
′
(G

′

k(t)−Gk)

(
bk⟨Â⟩ dt+

bk dW√
4λ

+
∑
j

MkjG
′

j dt

)∏
i ̸=k

δ(G
′

i(t)−Gi)

+ ρ̂
n∑

k=1

1

2
δ
′′
(G

′

k(t)−Gk)
b2k
4λ

dt
∏
i ̸=k

δ(G
′

i(t)−Gi)+

√
λ{Â− ⟨Â⟩, ρ̂}

n∑
k=1

δ
′
(G

′

k(t)−Gk)
bk√
4λ

∏
j ̸=k

δ(G
′

j(t)−Gj) dt+

ρ̂
∑
k

∑
j ̸=k

δ
′
(G

′

k(t)−Gk)δ
′
(G

′

j(t)−Gj)
bkbj dt

4λ

n∏
i ̸=k,j

δ(G
′

i(t)−Gi)

]

(4.A5)

The stochastic terms can be neglected using EW [dW ] = 0:

dρ̂ (G) = EW

[
−i
ℏ

[
Ĥ(G), ρ̂(G)

]
dt+ λD[Â]ρ̂(G) dt +

n∑
k=1

δ
′
(G

′

k(t)−Gk)
1

2

{
bkÂ dt+

∑
j

MkjG
′

j dt , ρ̂

}∏
i ̸=k

δ(G
′

i(t)−Gi)

+ ρ̂

n∑
k=1

1

2
δ
′′
(G

′

k(t)−Gk)
b2k
4λ

dt
∏
i ̸=k

δ(G
′

i(t)−Gi)+

ρ̂
∑
k

∑
j ̸=k

δ
′
(G

′

k(t)−Gk)δ
′
(G

′

j(t)−Gj)
bkbj dt

4λ

n∏
i ̸=k,j

δ(G
′

i(t)−Gi)

]
(4.A6)
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The final step is to use the following properties of the delta function [68]:

∂

∂G′
δ(G′ −G) = − ∂

∂G
δ(G′ −G), (4.A7)[

∂

∂G′
δ(G′ −G)

]
f(G′) =

∂

∂G′
[δ(G′ −G)f(G)] . (4.A8)

And the master equation derived can be rearranged as in Eq. (4.19):

∂tρ̂(G) =
−i
ℏ

[
Ĥ(G), ρ̂(G)

]
+ λD[Â]ρ̂(G)− 1

2

n∑
k=1

∂Gk

{
bkÂ+

∑
j

MkjG
′

j, ρ̂(G)

}

+
∑
k

∑
j

bkbj
8λ

∂2

∂Gk
∂Gj

ρ̂(G).

(4.A9)

Note that I gather the second derivative terms using the property of the cross-second derivative

being symmetric.
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4B Filtering for specific QFPMEs

All filters used in this Chapter can be written using the generic master equation in Eq. (4.19).

For a sequence of low-pass filters, one can use

M =



−γ1 0 0 . . . 0

γ2 −γ2 0 . . . 0

0 γ3 −γ3 . . . 0

...
... . . . ...

0 . . . γn −γn



b⃗ =



γ1

0

...

0

0



, (4.A10)

to recover the master equation in Eq. (4.5).

The QFPME with band-pass filter in Eq. (4.10) can be written using:

M =


−γ −Ω

Ω −γ

 b⃗ =


γ

0

 . (4.A11)
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Finally, the master equation (4.15) of a generic analytical filter (4.11) can be written using:

M =



0 1 0 . . . 0

0 0 1 . . . 0

...
... . . . ...

−a0 −a1 −a2 . . . −an−1



b⃗ =



f(0)

f (1)(0)

...

f (n−1)



. (4.A12)
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4C Cooling a quantum harmonic oscillator

In this section, I describe the equations of motion used to derive the results in Sec. 4.5. All

results were derived by solving for the asymptotic solution for the system of coupled differential

equations that describe the system’s energy and all other relevant expected values.

Two-layers of filtering

The asymptotic ensemble energy for the system that evolves under the protocol defined by

Eq. (4.21) is calculated by solving for the steady state of the following system:

∂t



R1

R2

R3

R4



=



0 −Ω 0 0

2γ −(Ω + γ) −Ω −ω

0 2γ −2(Ω + γ) 0

0 ω 0 −(Ω + γ)





R1

R2

R3

R4



+



λ

0

γ2

2λ

0



(4.A13)
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Each element of the vector R⃗ = (R1, . . . , R4)
T is given by a expected value:



R1

R2

R3

R4



=



⟨Ĥ2⟩/ℏω

⟨(x̂−Dx,2)(Dx,1 −Dx,2)⟩+ ⟨(p̂−Dp,2)(Dp,1 −Dp,2)⟩

⟨(Dx,1 −Dx,2)
2⟩+ ⟨(Dp,1 −Dp,2)

2⟩

⟨(x̂−Dx,2)(Dp,1 −Dp,2)⟩ − ⟨(p̂−Dp,2)(Dx,1 −Dx,2)⟩



. (4.A14)

One can solve for ⟨Ĥ2⟩∞ by setting ∂tR⃗ = 0 to get Eq. (4.27). Equation (4.26) can be

calculated by taking higher order derivatives of this system of equations to isolate the equation

for the internal energy.

Three-layers of filtering

The asymptotic energy in Eq. (4.34) can be calculated by setting ∂tS⃗ = 0, in the following
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system of equations:

∂tS⃗ =



0 −Ω 0 0 0 0 0 0 0

0 −Ω ω −Ω Ω 0 0 0 0

0 −ω −Ω 0 0 Ω 0 0 0

0 0 0 −2Ω 0 0 2Ω 0 0

2γ −γ 0 0 −(γ + Ω) ω −Ω 0 0

0 0 −γ 0 −ω −(γ + Ω) 0 −Ω 0

0 γ 0 −γ 0 0 −(2Ω + γ) 0 Ω

0 0 −γ 0 0 0 0 −(2Ω + γ) 0

0 0 0 0 2γ 0 −2γ 0 −2(Ω + γ)



S⃗+



λ

0

0

0

0

0

0

0

γ2

2λ


(4.A15)
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S1

S2

S3

S4

S5

S6

S7

S8

S9



=



⟨Ĥ3⟩/ℏω

⟨(x̂−Dx,3)(Dx,2 −Dx,3)⟩+ ⟨(p̂−Dp,3)(Dp,2 −Dp,3)⟩

⟨(p̂−Dp,3)(Dx,2 −Dx,3)⟩ − ⟨(x̂−Dx,3)(Dp,2 −Dp,3)⟩

⟨(Dx,2 −Dx,3)
2⟩+ ⟨(Dp,2 −Dp,3)

2⟩

⟨(x̂−Dx,3)(Dx,1 −Dx,2)⟩+ ⟨(p̂−Dp,3)(Dp,1 −Dp,2)⟩

⟨(p̂−Dp,3)(Dx,1 −Dx,2)⟩ − ⟨(x̂−Dx,3)(Dp,1 −Dp,2)⟩

⟨(Dx,1 −Dx,2)(Dx,2 −Dx,3)⟩+ ⟨(Dp,1 −Dp,2)(Dp,2 −Dp,3)⟩

⟨(Dp,2 −Dp,3)(Dx,1 −Dx,2)⟩ − ⟨(Dx,2 −Dx,3)(Dp,1 −Dp,2)⟩

⟨(Dx,1 −Dx,2)
2⟩+ ⟨(Dp,1 −Dp,2)

2⟩



. (4.A16)

Band-pass filtering

The asymptotic energy of the band-pass filter system in Eq. (4.42) can be calculated by
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solving:

∂t



T1

T2

T3

T4

T5

T6

T7

T8

T9



=



−2γ Ω 0 0 0 0 0 0 0

0 −2γ −ω Ω Ω 0 0 0 0

0 ω −2γ 0 0 Ω 0 0 0

0 0 0 −2γ 0 0 2Ω 0 0

2γ −Ω 0 0 −γ −ω Ω 0 0

0 0 −Ω 0 ω −γ 0 Ω 0

0 γ 0 −Ω 0 0 −γ 0 Ω

0 0 −γ 0 0 0 0 −γ 0

0 0 0 0 2γ 0 −2Ω 0 0



T⃗ +



1
2

(
λ
γ
+ γ

4λ

)

0

0

0

−γ2

2λ

0

0

0

γ2

2λ


(4.A17)
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T1

T2

T3

T4

T5

T6

T7

T8

T9



=



⟨Ĥ(E1)⟩/ℏω

⟨(x̂− Ex,1)Ex,2⟩+ ⟨(p̂− Ep,1)Ep,2⟩

⟨(x̂− Ex,1)Ep,2⟩ − ⟨(p̂− Ep,1)Ex,2⟩

⟨E2
x,2 + E2

p,2⟩

⟨(x̂− Ex,1)Ex,1⟩+ ⟨(p̂− Ep,1)Ep,1⟩

⟨(x̂− Ex,1)Ep,1⟩ − ⟨(p̂− Ep,1)Ex,1⟩

⟨Ex,1Ex,2 + Ep,1Ep,2⟩

⟨Ex,2Ep,1 − Ep,2Ex,1⟩

⟨E2
x,1 + E2

p,1⟩



. (4.A18)
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Chapter 5: Predicting temperature and atom number using machine learning

This chapter is based on collaborative work with Brady Egleston, Dario D’Amato, Michael

Doris, Justyna Zwolak, and Ian Spielman [4]. This work was done at Minilab, part of Spielman’s

group at NIST Gaithersburg. This project aims to use machine learning to predict the temperature

and number of atoms of an ensemble of cooled potassium-39 atoms. In this project, we collected

experimental data, developed a numerical analysis pipeline to extract physical parameters from

the experiment, and trained various models to learn those physical parameters. We show that it is

possible to learn the temperature and the number of atoms from fluorescence images with good

precision. My contribution to this project was on the numerical analysis to estimate the number of

atoms and the temperature of the cold cloud of atoms. I also contributed to the machine learning

component of the study by training all models and testing different architectures to predict the

physical parameters.

So far, this thesis has focused on quantum control and feedback. Here, the focus is on the

measurement and estimation. Using machine learning, we demonstrate that the properties of an

atomic cloud system can be calculated in real-time. Extracting these parameters from fluores-

cence images without invasive measurements opens the door to closed-loop control strategies.

Real-time estimation of system’s properties is a crucial step towards implementing advanced

quantum feedback control schemes. Precise knowledge of atom number and temperature enables
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dynamic adjustments of cooling parameters, potentially improving the efficiency and stability of

the trapping process.

5.1 Introduction

In recent years, many ground-breaking discoveries have been made in laser physics [21,

22], the cooling of neutral atoms [19, 20], Bose-Einstein condensates (BEC) [23, 24], and the

precise control of quantum systems [163, 193, 194]. Many of these studies started novel research

areas and motivated the development of new technologies. In particular, the cooling, trapping,

and control of neutral atoms are essential for some quantum computing platforms [32–34] and

atomic clock technology [25, 26].

The semiclassical theory [195, 196] for cooling neutral particles with light is described in

terms of the atom’s absorption and emission of photons. The simplified idea is that when the

atom absorbs a photon, it gets “kicked” in momentum space by an amount ℏk, see Fig. 5.1. After

some characteristic time, the photon will be re-emitted in a random direction, causing the average

effect to be the change in momentum in the laser propagation direction.

However, because the atom is moving with respect to the laser, it feels a different frequency

in its rest frame (Doppler shift). This causes the absorption probability to be dependent on the

velocity. If two counterpropagating lasers are used, the net effect is that the radiation force

depends linearly on the velocity [196]. This dependence creates an effective friction or “viscous”

media for the atoms to move in, causing the desired cooling effect. This stochastic process

leads to a Brownian motion in momentum space that describes the momentum relaxation towards

cooling [197, 198]. The theoretical cooling limit in this model is given by the Doppler limit,
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Figure 5.1: Atom absorbing and re-emeting a photon. a) The atom has initial velocity v⃗ and the
photon carries momentum ℏk⃗. b) the atom absorbs the photon and goes to an excited state while
changing its velocity by ℏk⃗/m. c) after a decaying timescale, the atom re-emits the photon in a
random direction and gets a new kick in momentum.

which is the amount of recoil the atom experiences after absorbing the photon [199].

The Doppler shift poses another limitation on the cooling effect: the atoms are effectively

transparent to the laser if their velocities cause a large detuning between the resonance frequency

and the laser frequency. This problem motivated the development of laser-chirping techniques

and the Zeeman slower [200–205]. The latter uses magnetic fields to change the resonance fre-

quency of the atoms to keep them close to the laser frequency as their velocity changes in the

cooling process.

The cooling technique that employs the velocity-dependent force using counter-propagating

lasers, as described, is referred to as Optical molasses, as it creates a viscous medium for the

atoms and dissipates kinetic energy [196, 206]. To trap the atoms, one needs to create a position-

dependent force, which is typically done using magnetic fields. Using a similar idea to the Zee-

man slower, it is possible to create a magnetic field gradient that increases the likelihood of

absorption towards the trap’s center. Now, one needs to consider the polarization of the lasers to

induce the correct transition if the atom is on one side of the trap or the other. The combination

of radiation pressure from the laser and the position-dependent energy splitting configures the

standard technique for cooling and trapping, typically referred to as magneto-optical trap (MOT)
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[206–208].

Surprisingly, temperatures much lower than the Doppler limit were reported for sodium

atoms trapped in a MOT configuration [209]. This unexpected result was later explained by a new

sub-Doppler cooling mechanism. The laser polarization and the internal atomic structure give

rise to a “Sisyphus” cooling (or polarization-gradient cooling), where atoms repeatedly climb

potential energy hills, losing kinetic energy in the process [210–212]. Today, the standard MOT

cooling techniques can create clouds with typical temperatures of a few millikelvins containing

around 109 atoms in a region of a few millimeters. Over the years, new approaches have been

developed, and some systems can be cooled down to the order of nanokelvin or below.

The last century was also marked by the development of computation theory [213]. In the

1950s, the concept of artificial intelligence (AI) emerged as a system capable of performing tasks

that typically require human intelligence, such as reasoning, problem-solving, perception, and

learning. In a subset of this broad definition, we have machine learning (ML) that focuses on

developing algorithms that allow computers to learn patterns and make predictions or decisions

based on data. Throughout this work, I will focus on a particular tool called a neural network

(NN). The building blocks for NNs are the perceptrons, which were developed as an information

model of biological neurons [214, 215]. A combination of perceptrons creates layers, and the

layers can be stacked to create NNs. In principle, a wide and deep enough NN can approximate

any function [216, 217]. This property enables NNs to learn patterns from data and approximate

unknown functions, mapping inputs to outputs.

The connection between ML and physics dates back to the 1980s [218] with work from

Hopfield connecting NNs with statistical physics. Nowadays, with the increase in computa-

tional power and the development of modern numerical techniques, the use of ML in sciences is
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widespread [219]. Recent applications can be found from the control of quantum devices [220] to

the study of black holes [221], and everything in between. The general goal is to obtain hidden in-

formation and to learn patterns that can sometimes be unexpected for human intuition [222]. Our

focus is similar: to estimate the physical parameters of laser-cooled atoms from non-destructive

fluorescence imaging, which only captures scattered light during the cooling process. These im-

ages are typically only used to study the spatial structure of the clouds and reveal no direct access

to properties like temperature. Here, we demonstrate that ML can extract the hidden physical

properties of clouds generated from real experimental data.

During the cooling and trapping stages of a MOT, the atoms constantly scatter light from the

lasers. Imaging this fluorescence allows for a noninvasive mechanism of monitoring the trapped

cloud. In the low-density limit of the cloud, the overall fluorescence is expected to be proportional

to the atom number [223]. However, there is no obvious correlation between the properties of

the fluorescence imaging and the temperature of the cloud. This parameter is usually determined

from time-of-flight (TOF) imaging, in which the atoms are freed from the MOT and allowed

to ballistically expand for a set time. The evolution correlates the spatial distribution with the

velocity distribution, from which the temperature is estimated.

In this chapter, I focus on calculating the properties of neutral potassium-39 atoms trapped

in a MOT configuration. These properties are first determined using standard techniques and

later estimated using ML. I show that one can recover the temperature and the number of atoms

of atomic clouds using NNs. This chapter is organized as follows: in Sec. 5.2, I describe the

theoretical methods to reconstruct the velocity distribution and estimate the temperature of the

atomic cloud. Section 5.3 describes the pipeline from the data collection to the model training. In

Sec. 5.4, I briefly describe the experimental setup to generate the atomic clouds. Then, Sec. 5.5
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describes the data acquisition and labeling process. Section 5.6 shows the regression models used

to infer the physical parameters. In Sec. 5.7, I present the results of the ML training. Finally,

Sec. 5.8 discusses the results and Sec. 5.9 concludes.

5.2 Methods to estimate the velocity distribution of cold atoms

In this section, I focus on developing robust methods to estimate the temperature of a cold

atomic cloud. Assigning a temperature to an atomic cloud assumes that the velocity distribution

is uncorrelated with the position distribution and follows Maxwell’s thermal distribution. This

hypothesis may not be guaranteed, as the preparation stage of a trapped cloud of atoms may leave

the particles in a non-thermal equilibrium configuration. Here, I present various methods with

increasing complexity that aim to answer the question of how good the thermal assumption is for

the data we collected and how to approach this problem using statistical physics.

The present analysis starts by considering that we have access to images representing the

position distribution of atoms in a particular cloud. Each cloud is considered to be trapped at

t = 0 and then released. After some time, τ , we take a picture and repeat the process N times by

varying how much time τ we wait in each iteration. Thus, the measured object is a set {ρmeas,k, τk}

describing the position distribution of atoms ρmeas,k at time τk. The goal is to calculate the tem-

perature (or a temperature-like parameter) that best describes the atomic cloud.

Consider the cloud to be composed of non-interacting classical particles. This assumption

allows us to write a ballistic expansion for the atoms. The position distribution at any time τn can
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be related to the initial position distribution and the general velocity distribution

ρn(x, y) =

∫
dx0 dy0 dvx dvyρ0(x0, y0)σ(vx, vy|x0, y0)×

δ[x− (x0 + vxτn)]δ[y − (y0 + vyτn)].

(5.1)

Here, ρ0 denotes the initial position distribution, and σ(vx, vy|x, y) denotes the velocity distribu-

tion, which can be correlated with position. This evolution can be simplified by integrating the

delta functions

ρn(x, y) =

∫
dx0 dy0 ρ0(x0, y0)

1

τ 2n
σ

(
x− x0
τn

,
y − y0
τn

∣∣∣x0, y0) , (5.2)

ρn(x, y) =

∫
dx0 dy0 ρ0(x0, y0)Kn

(
x− x0, y − y0

∣∣∣x0, y0) . (5.3)

Here,

Kn(x, y|x0, y0) =
1

τ 2n
σ

(
x− x0
τn

,
y − y0
τn

∣∣∣x0, y0) , (5.4)

defines the physical model and can include correlations and interactions. The Fourier transform

of Eq. (5.3) can be written as:

F{ρn} =
∫

dx0 dy0 ρ0(x0, y0)

∫
dx dy e−ikxx−ikyyKn

(
x− x0, y − y0

∣∣∣x0, y0) , (5.5)

=

∫
dx0 dy0 ρ0(x0, y0)e

−ikxx0−ikyy0F{Kn[x0, y0]}, (5.6)

= F{ρ0F{Kn[x0, y0]}}, (5.7)

where the notation Kn[x0, y0] denotes that the kernel Kn is parametrized by the value (x0, y0).

Note that all results here are derived in terms of continuous functions and integrals over
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Figure 5.2: Comparison of non-Gaussian and Gaussian shaped clouds. The absorption images
are taken after 1 ms − 5 ms of expansion. In the first row, we have the files 2024-02-05 group
0527; in the second row, we have the files 2024-02-04 group 0616. Non-ideal MOTs can expand
as two (or more) separate clouds or retain their initial shape for longer times.

real space. For experimental data, the images have a finite resolution, thus everything is extended

to the discrete case. Integrals become sums, distributions become probabilities, and so on.

5.2.1 Formal solution using a thermal velocity distribution

In this section, I write the exact solution for the ballistic evolution of an initial ensemble

of atoms. The starting point is to consider the initial t = 0 distribution of atoms in the Gauss-

Hermite basis expansion:

ρ0(x, y) =

(
1

2πσx0σy0

)
e−x2/2σ2

x,0−y2/2σ2
y,0

∑
n,m

c
(0)
nm

2n+mn!m!
Hn

(
x√
2σx,0

)
Hm

(
y√
2σy,0

)
,

(5.8)∫
dx dy ρ0(x, y)Hn

(
x√
2σx,0

)
Hm

(
y√
2σy,0

)
= c(0)nm. (5.9)

Note that the Gauss-Hermite functions form a complete basis, so in principle, any well-behaved

function can be described by Eq. (5.8). See Fig. 5.2 for two examples of typical cloud distri-
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butions. These images represent absorption optical depth measurements of the cloud of atoms;

more details on the measurements and the experiment are left for Sec. 5.3.

If the system is in thermal equilibrium, we expect the velocity distribution to be described

by the Maxwell’s velocity function. In this scenario, the evolution kernel can be written as:

Kn(x, y) =

(
m

2πkBτ 2n
√
TxTy

)
e
− m

2kBτ2n
(x2/Tx+y2/Ty)

. (5.10)

The generic evolution of the distribution at time t = 0 to a later time t = τ can be written in

terms of the Fourier transformation, as in Eq. (5.7):

F{ρτ} = F{ρ0}e−
kBτ2

2m
(Txk2x+Tyk2y). (5.11)

To calculate the Fourier transform of the initial distribution, I use the following equation

[224, 18.17.21 2]:

1√
π

∫
du e−u2

Hn(u)e
iuy = (+i)ne−

y2

4 yn. (5.12)

Thus,

F{ρ0} =
1

2π
e−

1
2
k2xσ

2
x,0−

1
2
k2yσ

2
y,0

∑
nm

c
(0)
nm

2n+mn!m!
(−i)n+m

(√
2kxσx,0

)n (√
2kyσy,0

)m
(5.13)

Combining both equations, we get:

F{ρτ} =
1

2π
e−

1
2
k2xσ

2
x,τ− 1

2
k2yσ

2
y,τ

∑
nm

c
(0)
nm

2n+mn!m!
(−i)n+m

(√
2kxσx,0

)n (√
2kyσy,0

)m
, (5.14)
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using the definition

σ2
i,τ = σ2

i,0 +
kBTi
m

τ 2 i = x, y. (5.15)

Now, to take the inverse Fourier transform, we need to use the following (see [224, (18.17.21 21)]):

1√
2π

∫
dk
(√

2kσ
)n
e−

1
2
k2σ2

τ eikx =

=

(√
2σ
)n

στ

1

σn
τ

1√
2π

∫
duune−

1
2
u2

eiux/στ

=

(√
2σ
)n

στ

σn
τ

σn
τ

(−i)n dn

dxn
1√
2π

∫
du e−

1
2
u2

eiux/στ

=

(√
2σ
)n

στ
(−i)n dn

dxn
e−x2/2σ2

τ

=
(σ)n

στ

(√
2στ
)n

σn
τ

(−i)n dn

dxn
e−x2/2σ2

τ

=
(σ)n

στ

(+i)n

σn
τ

dn

dun

[
(−1)ne−u2

] ∣∣∣
u=x/

√
2στ

=
(σ)n

στ

(+i)n

σn
τ

[
e−u2

Hn(u)
] ∣∣∣

u=x/
√
2στ

=
(+i)n

στ

(
σ

στ

)n

e−x2/2σ2
τHn

(
x√
2στ

)
. (5.16)

Finally, we get the evolution of a generic atomic distribution to be

ρτ =

 1

2π
√
σ2
x,0 +

kBτ2Tx

m

√
σ2
y,0 +

kBτ2Ty

m

 e
− 1

2
x2

σ2
x,0+

kBτ2Tx
m

− 1
2

y2

σ2
y,0+

kBτ2Ty
m ×

∑
nm

c
(0)
nm

2n+mn!m!

(√
σ2
x,0

σ2
x,0 +

kBτ2Tx

m

)n(√
σ2
y,0

σ2
y,0 +

kBτ2Ty

m

)m

× (5.17)

Hn

 x
√
2
√
σ2
x,0 +

kBτ2Tx

m

Hm

 y
√
2
√
σ2
y,0 +

kBτ2Ty

m


The usefulness of this analytical equation is that now we can use it to obtain the unknown
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Figure 5.3: Gauss-Hermite fitting of the cloud expansion of the files 2024-02-05 group 0616.
The first row contains the original cloud from 1 ms − 5 ms. The second row represents the
reconstructed clouds based on the fitted parameters. The first column contains the predicted
cloud at t = 0 and a heatmap with the absolute values of the Hermite coefficients, as defined in
Eq. (5.17).

distribution at time t = 0 and the anisotropic temperatures. By fitting all cloud images using this

function, one can determine the parameters (σx,0, σy,0, {c0nm}, Tx, Ty) and reconstruct the initial

image. So, instead of fitting each MOT image with its own Gauss-Hermite function, we can

constraint it to obtain a single Gauss-Hermite expansion that describes all images. The formal

solution for the t = 0 and the temperature of the cloud can be written as:

(σx,0, σy,0, {c0nm}, Tx, Ty)∗ = min
(σx,0,σy,0,{c0nm},Tx,Ty)

∑
k

∥ρmeas,k − ρτk∥
2. (5.18)

This general result shows that as τ → ∞, all higher order terms in the Gauss-Hermite

expansion vanish because of the terms (σ/στ )n, which is intuitive as we expect the cloud to look

more and more Gaussian as it expands. Equation (5.17) also recovers the typical Gaussian fitting

expansion method as a particular case when c
(0)
nm = δn,0δm,0, or for large values of τ , which

explains the use of more straightforward methods that don’t account for higher order Hermite

coefficients.
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Figure 5.4: Gauss-Hermite fitting of the cloud expansion of the files 2024-02-03 group 1201.
The first row contains the original cloud from 1 ms − 5 ms. The second row represents the
reconstructed clouds based on the fitted parameters. The fitting was done with maximum degree
of 5 for Hermite polynomials.

Figures 5.3 and 5.4 show two distinct examples of the application of Eq. (5.17). Using

a minimization routine in Python, it is possible to fit the five input images to determine the

temperature, sizes, and Hermite coefficients for the cloud expansion. Those quantities are then

used to reconstruct the cloud at t = 0, which is inaccessible directly from the experiment. Clouds

with an initial Gaussian-like shape (Fig. 5.3) are easier to fit and have a reasonable reconstruction.

In the second example, shown in Fig. 5.4, the reconstruction cloud seems good, but the predicted

cloud at t = 0 contains patterns that are not realistic. Problems like this can be common in fitting

routines similar to the ones I use for these results. The non-linear minimizers used in numerical

packages do not always yield the best optimal solution.

One explanation for the cloud’s poor reconstruction can be the truncation of the Hermite

coefficients in Eq. (5.17). The theoretical approach should be able to define any well-behaved

distribution in two dimensions. However, to make the problem numerically tractable, it is neces-

sary to truncate the number of Hermite coefficients (here, I use five as the highest degree). For

arbitrary clouds, the minimization routines are often very sensitive to initial conditions.
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5.2.2 Velocity kernel using deconvolution

In this section, I use Eq. (5.7), assuming that the velocity and the position are not correlated:

F{ρn} = F{ρ0}F{Kn}. (5.19)

However, the form of the velocity kernel is arbitrary, not necessarily a Gaussian distribution

with anisotropic temperatures. The idea is to solve a deconvolution problem and obtain the best

velocity kernel that evolves the cloud in time [225–227].

Naively, the formal solution is given by

Kn = F−1

{
F{ρn}
F{ρ0}

}
. (5.20)

However, the presence of noise in the convolution problem of Eq. (5.3) can make the denominator

in Eq. (5.20) ill-defined. Thus, one needs to use a more sophisticated method called Wiener

deconvolution (WD) or Wiener filtering [228, 229].

Before applying it, let’s review the basic steps of deriving the WD method. Consider a

target image y that satisfy

y = h ⋆ x+ ϵ, (5.21)

where h is the input image, and x is the convolution kernel for which one wants to solve. Here, ϵ

is the noise. Now, considers a deconvolution kernel W that satisfies

x = W ⋆ y. (5.22)
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Figure 5.5: Evolution kernel for the clouds defined by the files 2024-02-05 group 0616. The first
row is the input images of the cloud’s expansion. The second row contains the kernels calculated
using Eq. (5.25), and the third row is the reconstructed image calculated by convolving the initial
distribution with the respective kernel.

One can obtain the optimal solution for W by solving the following quadratic minimization

problem:

min
W
∥F{W}F{y} − F{x}∥2. (5.23)

The solution for the WD kernel is given by

xWD = F−1 {F{W}F{y}} , F{W} = F{h}∗S
∥F{h}∥2S + 1

, (5.24)

where S = ∥F{x}∥2/∥F{ϵ}∥2 denotes the Signal-to-Noise ratio (SNR) for convolution kernel.

The SNR depends on the unknown kernel x, making the solution in Eq. (5.24) underdefined. Typ-

ically, one treats S as a parameter that can be tuned to minimize the prediction error. Conversely,

prior knowledge about the statistical properties of the system’s noise can be used. The solution

in Eq. (5.24) recovers the naive solution in Eq. (5.20) for the case of S →∞, as expected.
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Figure 5.6: Evolution kernel for the clouds defined by the files 2024-02-03 group 1201. The first
row is the input images of the cloud’s expansion. The second row contains the kernels calculated
using Eq. (5.25), and the third row is the reconstructed image calculated by convolving the initial
distribution with the respective kernel.

Now, the solutions for the transformed velocity kernels are

Kn = F−1

{
F{ρ1}∗F{ρn}Sn

∥F{ρ1}∥2Sn + 1

}
, n = 2, . . . , N. (5.25)

Note that, in this method, we don’t have access to the initial t = 0 distribution. Thus, we have

to assume that all distributions are written in terms of the expansion of the first distribution. This

assumption is valid if the cloud hasn’t expanded much from t = 0 to t = τ1. In the limit of

Sn → 0 the kernels converge to

Kn → Snρ1 ⋆ ρn. (5.26)

Despite this solution being very different from the naive solution in Eq. (5.20), Eq. (5.26) is

intuitive because the kernels look smoother as time progresses (as they are a simple convolu-

tion between larger distributions). In the opposite limit Sn → ∞, the kernels look noisy and
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don’t behave as expected for longer times. The trade-off is the interplay between a reasonable

reconstruction of the input images and a smoother or noisy kernel.

Here, I applied this model to the two sets of images depicted in the previous subsection: see

Figs. 5.5 and 5.6. The kernels in the second rows are calculated using Eq. (5.25) with S = 10−2.

For this value of SNR, we can see both the smoother part of the solution at the center and the

noisy distributions at the boundaries of the velocity kernel. The first is related to the convolution

of the target and the input image, whereas the latter comes from the denominator. For the present

results, I don’t have a reliable method to assign a temperature for a given kernel. This is due to

the dependency on the SNR and how drastically the kernels vary as I change S.

5.2.3 Position dependent temperature distribution

The previous methods assumed that the velocity distribution is independent of the position

distribution, and Eq. (5.7) can be written as a product of two Fourier transformations. However,

this simplification might not be accurate for all experimental conditions. Here, we aim to describe

a numerical method to calculate a first-order correction to this approximation.

We assume that the atoms haven’t had much time to expand by the time of the first image.

Consequently, the temperature distribution is related to the position distribution at the earliest

time. To work with a complicated position-dependent temperature distribution, one needs to

assume a particular model for the kernel Kn[x0, y0] in Eq. (5.4). For simplicity, I assume a local
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Gaussian distribution with temperature that depends on position T (x0, y0)

F{Kn[x0, y0]} = e−
1

2m
kBτ

2
nT (x0,y0)(k2x+k2y) (5.27)

F{ρn} = F
{
ρ1e

− 1
2m

kBτ
2
nT (x0,y0)(k2x+k2y)

}
. (5.28)

So far, the model is exact. However, I need to make assumptions to solve for the position-

dependent temperature. Let’s consider that the velocity distribution is close to the Maxwell-

Boltzmann distribution with a single temperature. That means we can write the temperature

distribution as an average temperature and a small correction that has a spatial distribution

T (x, y) = T0 + δT (x, y). (5.29)

Here, T0 is the 0’th-order temperature, calculated using the fitting method described in Sec. 5.2.1.

I expand Eq. (5.28) using (5.29) up to k’th-order and solve for the correction using a linear

regression approach to minimize the error when considering all the TOF images.

Let’s consider the first-order correction. For a given TOF expansion, we can write

F{ρn} ≈ F{ρ1}e−
1

2m
kBτ

2
nT0k2r −

(
1

2m
kBτ

2
nk

2
r

)
F{ρ1δT1}Pne

− 1
2m

kBτ
2
nT0k2r , (5.30)

where k2r = k2x + k2y and Pn is a projection function that satisfies

Pn =


1,

1

2m
kBτ

2
nk

2
r ≤ 1

0,
1

2m
kBτ

2
nk

2
r > 1

. (5.31)
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To solve for the first-order correction, one needs to write the error function when consider-

ing all TOF images:

ϵ =
∑
n

∣∣∣∣F{ρn} − F{ρ1}e− 1
2m

kBτ
2
nT0k2r +

(
1

2m
kBτ

2
nk

2
r

)
F{ρ1δT1}Pne

− 1
2m

kBτ
2
nT0k2r

∣∣∣∣2 . (5.32)

The solution is obtained by considering dϵ/dδT1 = 0:

F{ρ1δT1} =
−
∑

n τ
2
ne

− 1
2m

kBτ
2
nT0k2r

[
F{ρn} − F{ρ1}e−

1
2m

kBτ
2
nT0k2r

]
Pn∑

n τ
2
n

[
e−

1
2m

kBτ2nT0k2r

]2 (
1
2m
kBτ 2nk

2
r

)
Pn

. (5.33)

Note that Eq. (5.33) has a few implementation issues. The first is that the denominator is ill-

defined for kr = 0. Thus, one needs to ignore this point or set it to zero. However, as we will

take a Fourier inverse of Eq. (5.33), the zero frequency component adds a constant value to the

distribution. Ultimately, we will set mean(δT1) = 0, making this problem manageable. The

second issue is the zeros in the denominator introduced by the projection operator in Eq. (5.31)

To circumvent this problem, instead of using Pk we will use 1 when k corresponds to the smallest

τk = min{τn}.

The final ingredient is to enforce that mean(δT1) = 0, and we can do that by calculating δT1

in Eq. (5.33) and then subtracting its mean. This will cause mean(δT1) = 0 but not mean(ρ1δT1)

and this is exactly the quantity we seek as a first-order correction for the temperature calculated

using the fitting method.

Numerically, I noticed that the values of ρ1δT1 are small and somewhat well-behaved.

However, because the temperature itself has a dependency δT1 ∼ (1/ρ1) from Eq. (5.33), the

range of values of the temperature distribution are very large and break the assumption that δT1 ≪
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T0.

To obtain a better approximation for the temperature distribution, one can seek a second-

order solution that approximates the evolution in Eq. (5.28) as:
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If one uses the solution in Eq. (5.33) as a input parameter and solves for δT2, the solution is:
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However, this solution has even larger values for δT2, which breaks the assumption that δT1 +

δT2 ≪ T0.

5.2.4 Discussions and conclusions

The problem of determining the temperature in a cold cloud of atoms is not new, and

various methods have been developed in the past decades [196, 209]. In this part of the chapter,

I focused on developing and presenting new methods to calculate the velocity distribution and

temperature of a cloud of atoms.

All methods are based on the ballistic convolution expansion of the atoms in Eq. (5.1).

This model assumes that the atoms have intrinsic velocities and expand ballistically without in-

teraction. As a consequence, if the velocity is described by an uncorrelated thermal distribution,
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the evolution of the position distribution can be solved exactly starting from a Gauss-Hermite

expansion. This result shows that for later times, the cloud of atoms looks more like a Gaussian

distribution, and all signatures of non-Gaussianity vanish. This analytical result can be used to

calculate the temperature and the τ = 0 distribution using a constrained Gauss-Hermite fitting.

Later, I study generalizations of these two assumptions: thermal distribution and uncorre-

lated velocities. In the case of uncorrelated but general velocity distribution, one can derive the

kernels that evolve the initial distribution into all other distributions. This method uses an image

deconvolution approach and assumes that the initial image isn’t much different from the t = 0

distribution, which cannot be recovered. The method has one degree of freedom: the SNR of the

deconvolution. This parameter controls the quality of the image reconstruction and the amount

of noise in the evolution kernel. An in-depth study of the effects of the SNR on the mapping

between the kernel and the cloud’s temperature is left for future work.

The third method can be used to probe the correlations between the velocity and position

distributions. I assume a Maxwell’s distribution with a local temperature that depends on position.

The method is perturbative, with the 0’th order temperature given by the average temperature that

better fits the evolution. The correlations are calculated in the first- and second-order corrections,

which depend on position and are assumed to be small. However, the structure of the solutions

depends on the inverse of the position distribution, which causes small values to contribute largely

and break the assumption of small corrections. A careful study to include noise in the analysis is

left for future work.
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5.3 Machine learning prediction pipeline

In the remainder of the chapter, I apply the first method developed in Sec. 5.2 to determine

the temperature of the atomic clouds. The goal is to use ML to determine the cloud’s temperature

and atom number using non-destructive measurements rather than TOF images. Here, I focus

on data labeling and ML training with a simplified discussion about the physical implementa-

tion. For a detailed discussion about the experiment and the sequence, see the manuscript in

preparation [4].

Figure 5.7: Workflow of the work. Data is generated (Sec. 5.4) in the experiment. Labels are
calculated, and the images are preprocessed (Sec. 5.5). The models (Sec. 5.6) are trained, and the
predictions are compared to the true values (Sec. 5.7).

Our pipeline works by setting the parameters of the experiment and then generating a run

that potentially creates an atomic cloud; this process is called a “shot”—this is the first step in

Fig. 5.7(a). To calculate the temperature using the method described in Sec. 5.2.1, the shots are

collected into “groups” of M = 5 shots that differ only by the TOF time.
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Table 5.1: Dataset labels. This table contains the labels derived from our classification and fitting
processes.

Symbol Label Range in dataset Description

T TEMP 0.5 mK to 30 mK Temperature

N NUM 8× 106 to 2× 108 Number of atoms

- MOT [true, false] Indicates whether there is any identifiable signal in
fluorescence data.

- GOOD MOT [true, false] Data for which the process described below was able
to assign TEMP, and NUM labels.

For each group, we classify the MOT configuration’s performance by assigning labels, as

seen in Table 5.1. These labels are hierarchical, as shown in Fig. 5.7(b), where we first define if

the images contain atoms (MOT label). The second category asks whether the MOT performance

is good or bad (GOOD MOT label). The metric used to decide if we have atoms or not is the total

fluorescence intensity. The metric used to decide if we have good MOT performance is to check

if the physical parameters of temperature (T ) and atom number (N ) could be determined and are

reasonable.

Once we label the dataset, we identify our input data by selecting the fluorescence images.

These images are pre-processed into “sets” to study different transformations in the data and

test the robustness of the ML models. Using these sets, we train various regression models—

ranging in complexity from a simple single-layer linear model (i.e., matrix multiplication, MM)

to a multi-layer perceptron (MLP) and a convolution neural network (CNN)— with all of them

being able to recover T and N . Figure 5.7 depicts the pipeline used from data generation to

labeling and (T,N) prediction.

Once trained, the best regression models can predict (T,N) with an average fractional error

(E%) of ≈ 3 %. To put it in perspective, if one assigns the average values for T [≈ (6± 4) mK]
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Figure 5.8: Experimental apparatus for MOT preparation and image taking at Minilab (NIST
Gaithersburg). 1) shows the science cell where the atomic cloud is prepared, 2) shows one of the
cameras used for imaging, 3) shows part of the mirrors and lenses used to focus the laser beams
on the MOT cell, and 4) shows the optical fibers that conduct the laser into the experiment.

and N [≈ (5 ± 3) × 107] for all clouds in our dataset, the average fractional error would be

E% ≈ 90 %. The time necessary to calculate the predictions is typically 0.3 ms to 1 ms.

5.4 Experiment

The experiment prepares and stabilizes an atomic cloud of potassium 39K atoms. We

employ a standard vapor-loaded MOT to slow down and trap atoms [206–208]. In our ex-

periment, cooling and trapping rely on radiation pressure from three pairs of counterpropagat-

ing laser beams, along with a quadrupole magnetic field. The lasers are red-detuned from the

F = 2 → F ′ = 3 transition of the atoms. In order to maintain the potassium-39 atoms in the

correct hyperfine subspace, we employ a repump laser tuned near the transition F = 1→ F ′ = 2.

In our present configuration, as seen in Fig. 5.8, atoms are captured from the low-velocity

tail (below ≈ 30 m/s) of dilute room temperature potassium-39 vapor in our vacuum system.
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Table 5.2: Experimental parameters varied to create diverse MOT conditions.

Parameter Range Description

Cooling AOM Volts 0.1 V to 1.5 V Voltage of the cooling laser
beam’s AOM (Acousto-
Optical Modulator). Controls
the intensity of the cooling
laser beam

Repump AOM Volts 0.4 V to 1.5 V Voltage of the repump laser
beam’s AOM. Controls the
intensity of the repump laser
beam.

Cooling Lock Offset 85 MHz to 95 MHz Controls the frequency offset
of the cooling with respect to
the repump laser.

Repump AOM Frequency 74 MHz to 94 MHz Controls the frequency off-
set of the repump laser beam
compared to the repump laser
source

MOT Quadrupole Ampere 2 A to 405 A Current of the MOT
quadrupole coils. Affects the
strength of the magnetic field.

MOT Loading Time 100 ms to 1800 ms Duration of the MOT loading
time.

TOF Time 1 ms to 5 ms Group variable: time of flight.
Symbol τ

The Doppler cooling achieved by the lasers’ radiation pressure can cool the 39K atoms to a typ-

ical temperature of ≈ 2 mK. The quadrupole magnetic field configuration can create a stable

region of about 5 mm where, usually, around 107 atoms are captured. The relevant experimental

parameters that are varied to create diverse MOT conditions are the lasers’ intensity, the lasers’

frequency, the current generating the quadrupole magnetic field, and the duration of the loading

phase, as seen in Table 5.2. The lasers’ properties are controlled by an acousto-optical modula-

tor (AOM) that provides high bandwidth control of the power and introduces tunable frequency
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Table 5.3: Imaging parameters. This table describes the relevant information of our three imag-
ing systems.

Camera name Resolution Magnification Magnified pixel size Measurement type

ex-camera 484× 644 0.5 14.8 µm fluorescence imaging

ey-camera 1024× 1280 0.333 15.9 µm absorption imaging

ez-camera 484× 644 0.375 19.7 µm fluorescence imaging

shifts.

The atomic clouds are imaged along the three Cartesian axes using independent arrange-

ments of lenses. The data is collected using complementary metal oxide semiconductor (CMOS)

cameras that we use to label the imaging axes (ex, ey, and ez). The camera properties are de-

tailed in Table 5.3. During data collection, the ex- and ez-cameras are used to collect fluorescence

images, while the ey camera is used for the TOF measurement.

The fluorescence images contain two frames: atoms and background frames. The TOF

image contains three frames: atoms, probe, and background frames. The TOF measurement

is also called absorption measurement because it images the shadow cast by the atoms on the

probe light. The ratio between the probe and atom intensity is used to calculate the optical depth

(OD)—a measure of the column atomic density, as described in Appendix 5A.

The fluorescence images capture the scatted light and are taken after the loading, cooling,

and trapping stages. The absorption image is the last step of the experiment because the trap is

shut down, and the atoms are set free to expand. After a pre-determined expansion time, τ , the

atomic absorption is measured. The evolution information obtained from the TOF absorption

image is then used to calculate the temperature and atom number, as ground truth labels for the

ML models.

150



5.5 Data collection

We collected data for various experimental conditions to explore the different possibilities

for forming an atomic cloud. We use a series of absorption images taken with the same experi-

mental parameters and with increasing TOF τn, with n = 1, . . . ,M , to assign (T,N) label for a

given experiment realization. To have a diverse and representative set of images (see Fig. 5.2),

we repeated the experiment several times and changed six experimental parameters that control

various aspects of the MOT configuration, see Table 5.2. We employed a semi-random strategy

to explore the parameter space using a random step around the regions where good atomic clouds

are formed. The current dataset consists of 6783 groups, totaling 33915 individual shots.

5.5.1 Labeling strategy

For each shot, we assign the four labels shown in Table 5.1. Here, I describe the strategy

for generating these labels in the order they are assigned in our labeling process.

MOT: This label identifies data in which the overall fluorescence counts subtracted from

the background noise lie above a certain threshold. This label is either True or False. Because

our data is organized into groups, this label is only assigned True if all images surpass the set

thresholds.

These thresholds aim to separate the data that don’t contain atoms (in which the photon-

shot noise governs the total count statistics) from the data that contain detectable fluorescence

counts from atoms; as depicted in Fig. 5.9

Atom number. To calculate the number of atoms, we integrate the pixel intensity in the

region where the probe laser has light and divide it by the scattering cross-section [230, 231].
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Figure 5.9: Distribution of total fluorescence counts for ex- (top) and ez- (bottom) images. The
dashed line represents the threshold used in each axis to determine if a group is assigned MOT =
True.

Then, we average it over all five images in the set

N =
1

M

A
∑M

n=1

∑
(ρTOF,n)

σ
, (5.36)

where ρTOF,n represents the n’th column density image (n = 1, . . . ,M ) [see Appendix 5A for

details on how to calculate these distributions], σ = 3λ2/2π is the scattering cross-section, with

wavelength of the transition being λ = 766.7 nm, and A is the effective area of the pixel.

Temperature. For the purpose of calculating the temperature labels to be used in ML
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training, we use the convolution method described in Sec. 5.2.1. The group of column density

images {ρTOF,n} is fitted using Eqs. (5.17,5.18) using a max degree of Hermite polynomials equal

to zero, i.e., using a simple convolved Gaussian fit. One can access the Tx and Tz anisotropic

temperatures but not Ty (because the TOF image is taken along the ey axis). Thus, the temperature

label is the average T = (Tx + Tz)/2 temperature determined by the fitting.

GOOD MOT: This label is determined by the quality of the fits used to obtain (T,N). If a

group is assigned MOT label True, then the second binary classification is based on whether the

results of the fits yield physical and sensible results. If the fractional error of the fits is larger than

20 %, or the integrated N has a negative value, then all shots in the group are assigned GOOD MOT

label False. Only data with GOOD MOT label True is used for the regression.

5.5.2 Data preprocessing

Three distinct preprocessing techniques are used to prepare the ex- and ez-fluorescence im-

ages of all 11500 good MOTs for ML training. The preprocessing functions range from a simple

compression, which helps simplify the model and speed up the training, to introducing image

flips and translation. The more complex preprocessing functions are essential to quantify the ac-

curacy and robustness of the different NN architectures. Each preprocessing function generates a

set to which all architectures are trained and tested.

The sets are:

• Compressed Set Sc: Each original ex- and ez-image is compressed to 48× 64 pixels [total

of 11500 data points].

• Flip Set Sf : Each original ex- and ez-image is compressed to 48×64 pixels. Data augmen-
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tation generates 770 images from horizontal and vertical flips of the original image [total

of 17250 (11500 + 5750) data points].

• Translation Set St: Each ex and ez-image is compressed to 48 × 64 pixels, randomly

flipped, and translated in a wider frame of 72 × 96 with zero padding [total of 34500 data

points].

The flip and translation sets contain more data because of augmentation. As we introduced

more variability to the training, we also need to generate more data so the models can learn from

it.

5.6 Machine Learning models

This section focuses on the various models we use to solve the task of predicting the tem-

perature and the number of atoms based on the fluorescence images. Although this work focuses

on presenting results for ML models, it is instructive to discuss a linear regression model to build

intuition in the prediction task and to have a baseline comparison as we increase the framework’s

complexity.

Linear regression. The simplest predictor one can build to estimate T and N using the

fluorescence images is based on linear regression. We employ linear fitting with six parameters

(four angular coefficients and two linear coefficients) to correlate the target parameters (T,N)
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with the integrated ex- and ez-fluorescence counts (Ix, Iz) (fluorescence total intensity):


T

N

 = L


Ix

Iz

+ b̃. (5.37)

Now, we consider three distinct ML architectures for the more sophisticated and robust

models, as seen in Fig. 5.7(c).

Matrix multiplication. The simplest model one can consider is a linear transformation.

The linearity of the transformation allows us to employ the early fusion approach [232] by com-

bining the ex and ez-images to form a single image. The resulting image is reshaped into a

one-dimensional (1D) input vector. We implement MM with a single fully connected layer and

linear activation where the input neurons directly connect to the output, as seen in Fig. 5.7(c.i).

The output is two neurons representing the predicted atom number and the temperature.

Effectively, this model is equivalent to multiplying a matrix by the one-dimensional reshape

of the images. This model generalizes the linear regression model by considering each pixel of the

two images as an independent dimension for linear regression rather than summing the intensities

of all pixels.

Multi-Layer Perceptron. For the MLP, we employ the late fusion approach [232], which

involves treating each input image as a separate entity before concatenating it into a single 1D

vector. The MLP model takes as input two 1D vectors representing the reshaped images and

independently propagates them through a sequence of fully connected layers using Leaky ReLU

for the activation function of the hidden neurons, see MLP in Fig. 5.7(c.ii). After a series of
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independent layers, the two outputs are concatenated and passed through a subsequent series of

fully connected layers. The final output layer retrieves the pair (T,N).

Image convolution CNN. The CNN architecture is the most suitable for image analysis

as it can learn spatial patterns in the images by convolving the so-called kernel (a small matrix)

with the image. The convolution introduces a translation invariance that enables learning the

critical two-dimensional (2D) features of the images. While CNNs are typically used for im-

age classification, in this work, we combine the pattern recognition power of the CNNs with a

fully connected layer to help learn nontrivial correlations between the features extracted from the

spatial kernels.

Similar to the MLP model, our CNN also employs the late fusion approach, with the par-

allel fully connected layers being replaced by two parallel series of convolutional layers. The

images undergo convolution, pooling, and activation layers before being flattened and concate-

nated. The concatenated data then passes through dense and activation layers for regression, see

CNN in Fig. 5.7(c.iii).

5.6.1 Optimization and training

For the present results, I used fixed architectures for each model. The particular choices of

the number of layers and amount of neurons/kernels in each layer were made using intuition from

preliminary tests. This is a sub-optimal solution because it is beneficial to use a hyperparameter

optimization to choose the specific details of the architecture. However, to show a proof-of-

concept result, the current choice of parameters suffices. For a better choice of architectures,

see [4]. Detailed information regarding the architectures for all three models can be found in
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Appendix 5B.

During training, all models utilized the Adam optimizer [233]. The training concluded

when the validation accuracy or loss showed no improvement for 500 consecutive epochs or after

a total of 2000 epochs. The typical training loop takes about 103 epochs and finishes in 101

minutes to 102 minutes with a single GPU. The typical evaluation time for all models ranges

from 0.3 ms to 1 ms.

Due to camera digitization, the input images are normalized by 4096 on a pixel level prior

to training. The labels are normalized using a min-max function of the log of the target parameters

(T,N). This is done because the range of target values can vary by orders of magnitude.

5.7 Prediction results

For all trained models, two performance metrics are reported: the coefficient of determi-

nation (R2) and the average fractional error [E% = (ET%, EN%)]. The R2 score quantifies the

proportion of variance in the data that is explained by the predictors, providing a measure of

overall model fit. Meanwhile, the average fractional error captures the relative deviation of pre-

dictions from true values, offering a complementary perspective on predictive accuracy that is

particularly useful when errors span multiple orders of magnitude. These metrics are computed

using ten randomly selected folds for cross-validation. The final reported scores are averaged

over all folds, with uncertainties estimated from the standard deviation.

As a baseline performance comparison, the simplest predictor (that always predicts the

average value for T and N ) has R2 = −0.0008± 0.0006 and E% = (94 %, 88 %)± (3 %, 3 %).

Linear regression. The average linear regression fitting scores are R2 = 0.13 ± 0.03 and
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Table 5.4: Summary table for the results of different architectures tested in different datasets. For
brevity, we denote ET% as the average fractional error (in percentage) for temperature and EN% as
the average fractional error (in percentage) for atom number. The numbers in parentheses show
the most significant digit of the standard deviation.

MM MLP CNN

Parameters R2 ET% EN% Parameters R2 ET% EN% Parameters R2 ET% EN%

Set Sc 12290 0.742(2) 23.5(2) 36.8(4) 7839970 0.991(7) 1.9(1) 3.5(2) 835394 0.991(1) 3.2(3) 3.1(2)

Set Sf 12290 0.68(1) 27(1) 40(1) 7839970 0.966(7) 3.9(6) 8.0(5) 835394 0.977(6) 4.5(6) 5.2(5)

Set St 27650 0.29(3) 56.0(6) 52.4(6) 15704290 0.733(4) 21.5(4) 42(1) 1228610 0.941(5) 6.9(4) 13.8(6)

E% = (65 %, 57 %)± (2 %, 2 %). The positive R2 indicates that this model can explain slightly

better the correlation between the total pixel intensity and the target (T,N). This result represents

an improvement from the average predictor and a higher baseline for more complex models.

Matrix Multiplication. The MM is more complex and generalizes the integrated fluores-

cence linear regression. Each pixel is treated as an independent degree of freedom, rather than

summing all pixels. Table 5.4 shows that it can predict the target properties with an accuracy of

23 %, at best. Interestingly, the atom number has worse performance than temperature.

As one increases the complexity of the input data (here, tested by the flip and translation

augmentation), the MM model has difficulty keeping up with more general data. The decrease

in accuracy is notable, but the results still lay above the warm-up models, as expected, since the

number of parameters is much larger.

Multi-Layer Perceptron. The MLP model contains nonlinear activations and is the largest

model in the number of parameters. Thus, it is expected to perform better than a linear model.

But, surprisingly, it performed better than the CNNs for temperature in sets Sc and Sf . This

performance can be seen in Table 5.4, with the best accuracy obtained in the order of 2 %.

In particular, it is interesting to note that no substantial change in performance occurred when

horizontal/vertical flips were introduced in the data. The MLP model seems to be robust to this
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type of generalization.

However, for set St, which contains flips and translation, the model has a drastic change in

performance. This drop in accuracy can be explained by the fact that MLPs are not designed to

treat spatially invariant data.

Convolution Neural Network. Convolution models were designed for image analysis

because they can extract information that can be scattered across the image. The results reported

in Table 5.4 show the performance of CNN remains robust for the first two datasets (Sc and Sf ).

For set St, temperature accuracy remains robust but the accuracy on atom number prediction

drops significantly.

The results show that the CNN model is the most suitable for temperature and atom number

prediction of all tested architectures. Although it has fewer parameters than the MLP model,

it is the most complex model and takes longer to train. The increase in training complexity

compensates for a gain in performance.

5.8 Discussions

All three methods successfully predict the labels using fluorescence images. And for all

sets, the prediction scores lie above the average predictor and the linear regression—as expected,

because these warm-up models are linear and only contain a small number of parameters. Sur-

prisingly, temperature is one of the parameters that can be accurately estimated using nondestruc-

tive images. Without access to expansion information, the NN models can calculate the cloud’s

temperature using a snapshot of the MOT while still trapped.

For the translation set St, we saw a substantial increase in error prediction, even for CNNs
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Figure 5.10: Matrix representation of the weights learned by the MM model multiplied by the
average fluorescence image on each set {Sc,Sf ,St}. For each set, on top, we have the weights
times the ex-fluorescence image, and on bottom, the weights times the ez-fluorescence image.
For each set, the plot on the left shows the evaluation capable of estimating temperature, and
the plot on the right shows the evaluation that can estimate the number of atoms. Blue pixels
correspond to positive values, red pixels to negative values, and white to zero.

(that are designed to work with translated data). This can happen due to many factors, including

the sub-optimal design of the architectures and possibly the low number of augmented data points

included in the original data set. More training is needed to test these claims and check for

improvement in training performance.

Although I cannot offer a physical explanation or intuition for the fact that NNs can pre-

dict (T,N) from fluorescence images, one can look at the learned parameters of these models to
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gain some insights. For the MM, the training can be explained as obtaining an optimal kernel

to perform an integration over the pixel images, as seen in Fig. 5.10. The trained model has a

spatial pixel distribution over the central region, where clouds are typically formed. The blue and

red colors show the model is summing and subtracting different regions in the image, indicat-

ing the atomic ensemble doesn’t contribute uniformly to the parameter estimation. Surprisingly,

the matrix capable of estimating the number of atoms differs significantly from a simple inte-

gration of the pixels (as one would expect from the relationship between fluorescence and atom

number [223]). This suggests that different parts of the cloud contribute differently to these esti-

mations. A further investigation into the physical mechanisms that allow temperature information

to be extracted from fluorescence images is left for future work.

5.9 Conclusions

In this chapter, we studied three distinct NN models to estimate the physical parameters of

an ensemble of cold atoms using solely nondestructive measurements. We implemented a fluores-

cence imaging system to collect the scattered light of the MOT system and use that information

to predict the temperature and the number of atoms in the atomic cloud.

The satisfactory accuracy of the MM and the MLP for sets Sc and Sf shows that simpler

models can be used if it is known that the input data is “simple” enough. As for more complex

data, here represented by the set St, a more sophisticated model, like a CNN, is necessary to

capture all the important features of the input data.

In general, ML models like the ones we present here can be used along with physical exper-

iments to estimate parameters and use that information to guide the evolution of the experiment
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without the need to employ destructive or invasive measurements. One immediate application

of the models of this work is to take fluorescence pictures of the cloud to estimate temperature

and check if the cooling techniques are being implemented efficiently during the evolution. After

being trained and validated, an ML model can apply real-time feedback in the experiment.

We hope this work can motivate the use of modern machine-learning models and tools to

speed up and increase the accuracy of cold atom experiments. The study of quantum phenom-

ena in cold atom systems can also benefit from ML models that learn complex patterns from

output signals and images. Further questions to be answered include an in-depth investigation

of how temperature information is encoded in the fluorescence images and which other physical

parameters can be estimated based on non-destructive measurements.
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5A Column density calculation

The absorption image frames are as follows: the atoms frame, the probe frame, and the

background frame. The atoms frame is taken immediately after the TOF expansion, and it ac-

tivates a probe beam on resonance with the atoms when being captured, as well as an imaging

repump beam. The probe frame is taken next, and it consists of the same probe and imaging

repump beams but is taken when no atoms remain. As such, the atoms frame appears darker

than the probe in places where the expanding atoms were present. Finally, a background frame is

taken with the probe turned off, but the imaging repump beam remains.

These three frames are used to calculate the OD image for the expanded MOT. The OD

image for TOF absorption is defined by [230, 231]

ρTOF = − log

(
atom− background
probe− background

)
− (atom− probe)

Isat
, (5.A1)

where Isat = 200 counts is used to correct for OD saturation. Here, Isat ≃ (E/τe)/A, with

E corresponding to photon energy, τe is the camera exposition time, and A is the pixel area.

The saturation intensity is used in units of counts rather than physical units, representing the

conversion of photons to digital camera counts.

5B Neural Network architectures

This section presents the exact architectures used for each architecture in each dataset. The

values in the cells of the tables represent the dimension of the layer: the number of neurons for a

fully connected layer or the number of kernels for a convolution layer.
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5B.1 Matrix Multiplication MM

Layer type Set Sc Set Sf Set St
Input layer 2× (48× 64) 2× (48× 64) 2× (72× 96)

Dense 2 2 2

5B.2 Multi-layer perception MLP

Here, the notation 2×Layer will denote that the input images are being processed in parallel

and that the details of the layers are equal for each image. After the flattening step, the processed

images are concatenated and passed through the regression’s fully connected layers.

Layer type Set Sc Set Sf Set St
2× Input layer (48× 64) (48× 64) (72× 96)

2× Dense + LeakyReLU 1024 1024 1024

2× Dense + LeakyReLU 512 512 512

2× Dense + LeakyReLU 256 256 256

Flattening + Concat 512 512 512

Dense + LeakyReLU 256 256 256

Dense + LeakyReLU 256 256 256

Dense + LeakyReLU 128 128 128

Dense 2 2 2

5B.3 Convolutional Neural Network CNN

Similarly to the FNN model, 2 × Layer denotes that the images are being processed in

parallel. The number inside the parenthesis of the Conv2D layer indicates the size of the kernel.
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Layer type Set Sc Set Sf Set St
2× Input layer (48× 64) (48× 64) (72× 96)

2× Conv2D(9) + LeakyReLU 8 8 8

2× BatchNorm + Dropout(0.2) + AvgPooling

2× Conv2D(9) + LeakyReLU 16 16 16

2× BatchNorm + Dropout(0.2) + AvgPooling

2× Conv2D(9) + LeakyReLU 32 32 32

2× BatchNorm + Dropout(0.2) + AvgPooling

2× Conv2D(9) + LeakyReLU 32 32 32

2× BatchNorm + Dropout(0.2) + AvgPooling

Flattening + Concat 768 768 1536

Dense + LeakyReLU 512 512 512

Dense + LeakyReLU 256 256 256

Dense + LeakyReLU 128 128 128

Dense + LeakyReLU 32 32 32

Dense 2 2 2
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Chapter 6: Outlook and future directions

In this thesis, I studied quantum measurements and feedback in various forms. Chapter 2

discusses various formulations of weak measurements and the derivation of the baseline master

equation: the QFPME [1]. In Chapter 3, I applied the QFPME to a particular toy model to

show how to use this framework to derive non-trivial analytical results. Generalizations of the

master equation are discussed in Chapter 4 where I showed how to extend the filtering operation

of QFPME to more realistic situations. The cooling protocol was also studied using a bandpass

filter. Finally, in Chapter 5, measurement is studied in a real system where I used fluorescence

images from potassium atomic cloud to estimate the temperature and atom number using machine

learning.

All topics discussed in this dissertation are related to quantum measurements. The increas-

ing interest and applications of quantum measurements make it necessary to develop realistic

models to describe experiments. The first chapters of the dissertation do this job by generalizing

earlier results and deriving a family of master equations capable of modeling complex experimen-

tal frameworks. The ability to translate complicated filtering into the experimental description

and still derive analytical results for the evolution of the ensemble of experiments is a significant

mark. I hope the results presented in this thesis can be used by experimentalists and motivate the

development of more sophisticated measurement processes.
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As for future directions, it would be interesting to investigate extensions and applications

of the generalized QFPME. Here, I investigated the generalization of the filtering process in

Chapter 4, so the next step would be to study a family of master equations whose starting point

is a different distribution of weak measurements — here, I used Gaussian measurements. By

considering more general distributions, one can ask how the statistics of the measurement affects

the ensemble of outcomes.

Master equations can also be applied to existing tasks to improve specific feedback proto-

cols. By solving for the steady state, one can employ a strategy similar to the one described in

Chapter 4, to construct phase diagrams that improve experimental results after introducing new

parameters. An important field where continuous feedback can be studied is quantum algorithms.

Instead of focusing on a measurement at the end of the computation, it would be interesting to

investigate the possibility of applying existing algorithms with a continuous measurement. Error

correction algorithms, in particular, can benefit from the possibility of correcting a mistake in

real-time.

Another avenue to study feedback master equations is their connections with thermody-

namics and fluctuation theorems [176]. The ensemble picture of quantum feedback models can

make natural connections with calculating moment distribution functions and studying expecta-

tion values beyond the first and second moments.

Finally, the generic framework of these master equations and their connection to continuous

measurement can be helpful in the study of many-body systems. Experiments like atomic clouds

and nuclear magnetic resonance can benefit from a many-body treatment of the measured opera-

tor. By investigating systems where nonlocal operators are measured, e.g. total magnetization or

fluorescence, one can probe collective behavior for interacting systems.
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