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Abstract
Harnessing quantum phenomena for technological applications relies heavily on preventing infor-
mation loss through decoherence. To prevent this loss, it is crucial to develop strategies that
enable the rapid and precise control of quantum systems, ensuring that desired processes are com-
pleted faster than decoherence times. From a control perspective, the environment is viewed as
a disruptive force; however, this ignores the rich informational dynamics that interactions with
an environment can induce. By relaxing the requirement for strict control and adopting a more
active treatment of the environment, this thesis explores how these dynamics contribute to the
emergence of classicality from quantum mechanics, and how it can change the internal information
structure in quantum many-body systems.

The study begins by addressing the challenges of controlling quantum systems near critical
points, where conventional adiabatic methods become inefficient due to closing energy gaps.
We propose a novel control strategy that applies counterdiabatic driving selectively within the
impulse regime, as recognised by the Kibble-Zurek mechanism. This reduces energetic costs
while maintaining high fidelity. This approach is validated both numerically and analytically,
demonstrating substantial energetic savings.

Next, we explore control strategies relevant to implementing unitary gates in two distinct
physical settings. The first involves analytically determining a Hamiltonian that achieves gate
operations with unit fidelity without external control, while the second leverages an auxiliary qubit
that requires external driving. Despite the latter scheme being more resource intensive, we show
that the additional complexity of driving and controlling an auxiliary qubit can be advantageous
when we subject the systems to decoherence.

Moving beyond controlled systems, we examine the informational dynamics of quantum sys-
tems subject to the influence of their environment. Here, we investigate scenarios in which systems
transition from pure quantum states to classically objective states as predicted by quantum Dar-
winism. By partitioning the environment into accessible and inaccessible parts, we reveal how the
interplay between these partitions determines whether classical objectivity emerges or if the system
equilibrates without the redundant encoding of the state of the system into the environment.

Finally, we explore the competition between two sinks for local quantum information - decoher-
ence and information scrambling. Information scrambling refers to the flow of initially accessible
quantum information into complex many-body correlations within the system itself. Typical mea-
sures of scrambling used in closed systems can fail to differentiate between the local information
spreading throughout the degrees of freedom of the systems and the spreading of information due
to decoherence. We introduce a method for probing information scrambling even in the presence
of open system effects, demonstrating that the environment restructures remaining information,
reducing the complexity of the system’s dynamics.

Collectively, these findings provide a comprehensive framework for understanding information
dynamics in open quantum systems, offering new strategies for preserving quantum coherence and
diagnosing the impact of an environment on the structure of quantum information.
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Chapter 1

Introduction

Fast and high-fidelity control of many-body quantum systems is key to outpacing decoherence
and turning quantum science into technology [5]. This transition from theory to practice should
also bring into focus practical problems associated with quantum technology to which quantum
theorists can contribute. In particular, resource efficiency should be prioritised as the field matures.
Already there have been calls for institutional initiatives to encourage this direction of research [6].
It is in this spirit that we will explore the energetic requirements of controlled dynamics of quantum
systems in Chapter 2 and Chapter 3.

Throughout this thesis the degrees of freedom we will work with are two-level systems - qubits,
or spins. Remarkable progress has been made in recent years to engineer qubits using trapped ions,
spin states of nucleii, superconducting circuits, and NV centres in diamond. However, for these
platforms it is impossible to completely isolate any quantum system from unwanted interactions
that disrupt the desired quantum information dynamics. This manifests as spin relaxation and spin
decoherence. The timescale for the latter is typically much shorter, and is the primary engineering
issue with quantum computers. Decoherence is the unifying concept between each of the chapters
of this thesis.

While in Chapter 2 and Chapter 3 we employ quantum control techniques to outpace the
effect of the environment on the desired dynamics, in Chapter 4 and Chapter 5 we will embrace
decoherence and explore what rich effects it can induce for the dynamics for a quantum system.
Before discussing each of these topics in turn, we will first need to introduce a few key concepts
and equations that will be used throughout the thesis, most notably closed system dynamics,
adiabaticity in quantum systems, and open system dynamics.

1.1 Closed Quantum Systems

Quantum mechanics is typically first introduced by explaining the development of and transition
from “old” quantum theory to the “new” quantum theory. “Old” quantum mechanics was born in
1900 when Max Planck communicated his modeling of the distribution of blackbody radiation [7].
The old quantum theory relied on putting in quantum numbers, integers that corresponded to
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quanta of energy, by hand into the theory [8]. It was successful when applied to “simple” systems
like the harmonic oscillator, hydrogen atom, rigid rotors, and oscillating rotors [9]. For more
complex systems such as the the hydrogen halide molecules and diatomic molecules required half-
integer quantum numbers in order for the theory to match observations, while energy levels of
helium atom and hydrogen molecule ion could not be explained using the old theory. The “new"
quantum mechanics was introduced with Schrödinger’s eponymous equation in a series of papers
in the first half of 1926 [10], and is given by

iℏ∂t |ψ(r, t)⟩ = H(r, t) |ψ(r, t)⟩ . (1.1)

Schrödinger replaced the old rules of quantisation with his wave equation, which required “no
mention of whole numbers. Instead, the introduction of integers arises in the same natural way
as, for example, in a vibrating string [10].” He applied the wave equation (1.1) to a number of
systems, including the diatomic molecule, and the hydrogen atom in the electric field, the latter of
which required the development of perturbation theory. Wavefunction mechanics rapidly surpassed
the old quantum theory, and has had immeasurable impact on both physics and chemistry. The
Schrödinger equation was initially postulated for wavefunctions that were continuous functions
of position and time (and momentum and time via a Fourier transform). The focus of this
thesis restricts to matrix mechanics, where we consider state vectors that are elements of a finite-
dimensional Hilbert space. The Schrödinger equation implies that the evolution of a quantum
state is unitary. Let’s recast the equation with Dirac notation

iℏ∂t |ψ⟩ = H |ψ⟩ . (1.2)

Taking the Hamiltonian to be time-independent gives us the solution, for t ≥ t0

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , (1.3)

where we have defined the time evolution operator

U(t, t0) = exp
{
− iH(t− t0)

ℏ

}
. (1.4)

We can immediately see that it is unitary, satisfying U †U = 1 as H is by definition a Hermitian
operator. If the Hamiltonian is time-dependent then the formal solution becomes a time-ordered
exponential [11]

U(t, t0) = T exp
{
− i
ℏ

∫ t

t0
H(t′)dt′

}
, (1.5)

where T is the time-ordering operator. Even in this unitary, or closed system framework, quantum
mechanics expands far beyond its original promise of explaining the spectra of atoms and molecules
to have potential to revolutionise fields as diverse as chemistry [12, 13], agriculture [14], and
neuroscience [15]. To leverage the inherent complexity of closed quantum dynamics, it is often
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useful to remain in the ground state of the system, and change the Hamiltonian governing it. The
adiabatic theorem for quantum systems is a powerful constraint for closed system dynamics to
achieve this.

1.2 Adiabaticity

In classical thermodynamics, an adiabatic process is one that does not result in heat exchange
between a system and the environment. In quantum mechanics, we define adiabaticity in a way
that does not require a partitioning between system and environment. Adiabaticity in quantum
mechanics demands that population changes do not occur in the instantaneous energy eigenbasis of
the system when a parameter of the Hamiltonian is changed. What is common to both definitions
is the concept of slow or “quasi-static” changes of the parameters of our system. From now
on we take natural units, ℏ = 1, unless otherwise stated. Our quantum-mechanical system is
described by the time-dependent Hamiltonian, H(t), and therefore its dynamics are given by the
time-dependent Schrödinger equation, restated here as

i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ . (1.6)

At each moment in time, the Hamiltonian has corresponding eigenvectors {|n(t)⟩} and eigenvalues
{En(t)}

H(t) |n(t)⟩ = En(t) |n(t)⟩ . (1.7)

Let us consider the decomposition of an arbitrary state in the instantaneous eigenbasis of the
system

|ψ(t)⟩ =
∑
n

pn(t)|n(t)⟩,

We substitute this into the time-dependent Schrödinger equation

i

[
∂t

(∑
n

pn(t)|n(t)⟩
)]

= H(t)
[∑
n

pn(t)|n(t)⟩
]
. (1.8)

Applying the product rule to the left-hand side gives

i

[∑
n

(
ṗn(t)|n(t)⟩+ pn(t) ˙|n(t)⟩

)]
=
∑
n

pn(t)En(t)|n(t)⟩. (1.9)

We act with the instantaneous eigenstate ⟨m(t)| to the left,

i

[∑
n

(
ṗn(t)⟨m(t)|n(t)⟩+ pn(t)⟨m(t)| ˙n(t)⟩

)]
=
∑
n

pn(t)En(t)⟨m(t)|n(t)⟩. (1.10)

By definition ⟨m(t)|n(t)⟩ = δmn, but derivatives of the state do not preserve orthonormality:
⟨m(t)|ṅ(t)⟩ ≠ δmn. Application of this gives
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iṗm(t) = pm(t)Em(t)− ipm(t)⟨m(t)|ṁ(t)⟩ − i
∑
n ̸=m

pn(t)⟨m(t)|ṅ(t)⟩. (1.11)

Adiabaticity in quantum mechanics demands that no transitions between instantaneous eigenstates
occur. In the previous line, the mixing of eigenstates arises from the ⟨m(t)|ṅ(t)⟩ term. Demanding
it is zero gives rise to the following solution

pn(t) = exp
[
− i
ℏ

∫ t

0
(En − i⟨n(t′)|ṅ(t′)⟩ dt′

]
pn(0). (1.12)

This implies that adiabaticity gives rise to an evolution where the instantaneous eigenstate pop-
ulations remain unchanged, but pick up an additional phase along the way. The phase can be
separated into two contributions, the usual dynamic phase ϕd,n(t) =

∫ t
0 En(dt′) dt′ and the geo-

metric phase (or Berry phase) [16] ϕg,n(t) = −
∫ t

0 i⟨m(t′)| ddt′ |m(t′)⟩ dt′. The only assumption we
made so far is that there are no transitions between states in the instantaneous eigenspectrum.
This adiabatic condition is quite strong, as can be seen by solving for the term in question that
we set to zero. To do so, we take the time derivative of the instantaneous Schrödinger equation

˙H(t)|n(t)⟩+H(t)|ṅ⟩ = Ėn(t)|n(t)⟩+ En(t)|ṅ(t)⟩.

Acting to the left with ⟨m(t)| gives

⟨m(t)|Ḣ(t)|n(t)⟩+ Em(t)⟨m(t)|ṅ(t)⟩ = Ėn(t)⟨m(t)|n(t)⟩+ En(t)⟨m(t)|ṅ(t)⟩.

Rearranging to isolate the transition term gives

⟨m(t)|ṅ(t)⟩ = ⟨m(t)|Ḣ(t)|n(t)⟩
En(t)− Em(t) , ∀m ̸= n. (1.13)

Adiabaticity is a strong requirement for the dynamics of the system, one which implies either large
gaps in the system’s spectrum (something we will take advantage of later) or slow changes in the
time-dependent terms of the Hamiltonian.

1.3 Adiabatic Gauge Potential

We previously isolated the source of non-adiabatic transitions for the evolution of a system. We
can recast this same term in such a way that it will allow for deeper understanding of deformations
in instantaneous eigenstates as the control parameters are changed. We will recast the problem to
have a control parameter, λ = λ(t), giving us the eigenvalue equation for the “bare” Hamiltonian
H0

H0(λ)|n(λ)⟩ = En(λ)|n(λ)⟩. (1.14)
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Let us consider an arbitrary state |ψ⟩. We transform it to the moving frame - i.e. the frame in
which the instantaneous Hamiltonian is diagonal

|ψ̃⟩ = U †|ψ⟩, (1.15)

where U is the unitary transformation that diagonalises the Hamiltonian. The solution to the
time-dependent Schrödinger equation in the moving frame is then

i∂t|ψ̃⟩ =
(
U †H0U − iλ̇U †∂λU

)
|ψ̃⟩, (1.16)

where we have dropped the implicit λ-dependence, and we recognise that

U †H0U = diag{E1(λ), E2(λ), ..., EN (λ)}. (1.17)

The second term, iλ̇U †∂λU , contains the information about non-adiabatic transitions between
the instantaneous eigenstates caused by the change in λ. Clearly if λ̇ → 0 we achieve adiabatic
transport. By transforming this term back into the lab frame we define an object denoted as the
adiabatic gauge potential (AGP),

Aλ = U(iU †∂λU)U † = i∂λ. (1.18)

We can solve for the matrix elements of the AGP by using the fact that the Hamiltonian is diagonal
in its eigenbasis,

(⟨m(λ)|H0(λ) |n(λ)⟩ = 0. (1.19)

Differentiating this with respect to λ gives

⟨∂λm(λ)|H0(λ) |n(λ)⟩+ ⟨m(λ)| ∂λH0(λ) |n(λ)⟩+ ⟨∂λm(λ)|H0(λ) |∂λn(λ)⟩ = 0. (1.20)

Using the time-independent Schrödinger equation and the orthogonality condition, ⟨∂λm(λ)|n(λ)⟩ =
−⟨m(λ)|∂λn(λ)⟩, we find that

i ⟨∂λm(λ)|∂λn(λ)⟩ = ⟨m(λ)|Aλ |n(λ)⟩ = i ⟨m(λ)| ∂λH0(λ) |n(λ)⟩
En(λ)− Em(λ) , ∀m ̸= n. (1.21)

The AGP can also be interpreted as the generator of eigenstate deformations,

∂λ |n(λ)⟩ = Aλ |n(λ)⟩ . (1.22)

Here we have taken a single parameter, but can be generalised to deformations in any direction of
a n-dimensional parameter space for our system. We can use the AGP to design a control scheme
for the system. Adding it to the lab frame Hamiltonian will cancel out the off-diagonal terms
in the moving frame, and keep the evolution of the arbitrary state adiabatic. That is to say, we
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evolve with the new Hamiltonian

H = H0 + λ̇Aλ = H0 +HCD, (1.23)

which keeps us along the adiabatic manifold of H0 for arbitrary driving rates λ̇. Above we have
rewritten the AGP as the counterdiabatic control Hamiltonian HCD as this control scheme is
equivalent to the well-known counterdiabatic control [17], which is typically stated as

HCD = i
∑
n

|∂λn⟩ ⟨n| − ⟨n|∂λn⟩ |n⟩ ⟨n| . (1.24)

In order to employ counterdiabatic control, we require full-knowledge of the spectrum of the
system. This already highlights an issue with counterdiabatic control in many-body systems, as
exact diagonalisation is computationally complex. However, as we shall discuss in Chapter 2 some
models such as the 1-dimensional transverse-field Ising model admit analytical solutions for their
counterdiabatic term for a finite number of spins. We will also leverage counterdiabatic control,
and an approximation of it in Chapter 3 to ensure that we can theoretically implement quantum
gates for arbitrarily fast times.

1.4 Composite Quantum Systems

We have previously made reference to the classical picture of thermodynamics when defining
adiabaticity, where one must make a partition between what is considered the system, and what is
considered the environment. Quantum systems may also be treated in a similar way. While not a
requirement for the use of the Schrödinger equation, we will take care to introduce what is often
referred to as the “zeroth” postulate of quantum mechanics [18]

The state of a composite system is the a vector in the Hilbert space that is a tensor product
of the Hilbert spaces of the subsystems.

While seemingly innocuous, the idea that the quantum universe consists of subsystems gives rise
to much of the rich phenomena associated to quantum mechanics. As we shall discuss later,
even the idea of a measurement implies subsystems. Let us briefly introduce the framework of
composite quantum systems. Consider two systems with Hilbert spaces HA and HB, respectively.
States of the composite system are elements of the composite Hilbert space, HAB = HA ⊗HB.
If HA is n-dimensional and spanned by the orthonormal states {|i⟩A , i = 1, 2, ..., n}, and HB is
m-dimensional and spanned by the orthonormal states {|j⟩B , j = 1, 2, ...,m}, then HAB is an
(n×m)-dimensional space spanned by states

{|i⟩A ⊗ |j⟩B , i = 1, 2, ...n, j = 1, 2, ...,m}. (1.25)
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A bosonic operator, OA, acting on states in the Hilbert space of subsystem A is elevated to

OA → OA ⊗ 1B. (1.26)

Similarly, a bosonic operator OB acting on states in the Hilbert space of subsystem B is elevated
to

OB → 1A ⊗OB. (1.27)

This structure can be expanded to an arbitrary number of subsystems

HABC... = HA ⊗HB ⊗HC ⊗ ... . (1.28)

For fermionic operators we must additionally take into account the parity of other subsystems in
order to ensure global anticommutation. A pure state is that which can be represented by a single
ket vector of the Hilbert space. A mixed state is statistical mixture of pure states, and cannot be
represented by a single vector as a result. Instead, we represent mixed states with density matrices.
A density matrix is a non-negative Hermitian operator with unit trace. It is the weighted sum of
projectors of the mixed state onto a spanning orthonormal set of pure states {|ψi}⟩ of the system’s
Hilbert space

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (1.29)

where ∑i pi = 1. In the case that the state represented is pure, the density matrix reduces to the
outer product of that state

ρ = |ψ⟩ ⟨ψ| . (1.30)

For pure states, the density operator is idempotent, ρ2 = ρ, and Trρ=1. For mixed states, this is
not the case. Density matrices are particularly useful for calculating expectation values of operators

⟨O⟩ =
∑
i

pi ⟨ψi|O |ψi⟩ ,

=
∑
i,j,k

pi ⟨ψi|j⟩ ⟨j|O |k⟩ ⟨k|ψi⟩ ,

=
∑
i,j,k

pi ⟨j|O |k⟩ ⟨k|ψi⟩ ⟨ψi|j⟩ ,

=
∑
j,k

Oj,kρkj ,

= Tr(Oρ).
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Consider now a density matrix, ρAB representing a state in a bipartite Hilbert space HAB, and an
operator, OA, that only acts non-trivially on the subsystem HA. The expectation value of OA is

⟨OA⟩ = TrAB((OA ⊗ 1)ρAB),

=
n∑
i=1

m∑
j=1
⟨i|A ⟨j|B ((OA ⊗ 1)ρAB) |i⟩A |j⟩B ,

=
n∑
i=1

m∑
j=1
⟨i|AOA ⟨j|B ρAB |i⟩A |j⟩B ,

=
n∑
i=1
⟨i|A

(
OA

m∑
j=1
⟨j|B ρAB |j⟩B

)
|i⟩A ,

= TrA
(
OATrB(ρAB)

)
,

= TrA
(
OAρA

)
,

where we have employed the partial trace of a density matrix

ρA = TrB(ρAB) =
∑
i

⟨bi|ρAB|bi⟩. (1.31)

where {|bi⟩} is an orthonormal basis for the Hilbert space of the subsystem B.
The dynamics of the total density matrix are governed by the Liouville-von Neumann equation of
motion [19]

d

dt
ρ(t) = −i[H, ρ(t)],

where we have introduced the commutator between operators, [A,B] = AB −BA. This has the
solution

ρ(t) = U(t, t0)ρ(t0)U †(t, t0),

where we have the same unitary operator as defined in (1.4).

1.5 Open Quantum Systems

While the global density matrix evolves unitarily, if we restrict ourselves to the reduced state of
a subsystem, we may find that the evolution is no longer governed by a unitary operator. This is
the case when subsystems interact with each other. Consider a partitioning of the global Hilbert
space into a system, S, and environment, E, such that HSE = HS ⊗ HE . A state in the total
Hilbert space evolves unitarily with the Hamiltonian that generates the time evolution operator
reading

HSE = HS ⊗ 1E + 1S ⊗HE +HI , (1.32)

where HI is an interaction term between the subsystems. The object of interest is the reduced
state ρS . We will make the assumption that the total state of system and environment begins in
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a product of pure states (i.e. that there are no initial correlations) We obtain the reduced state
of the system by employing the partial trace (where we suppress the time arguments apart from
the initial states)

ρS = TrE (ρSE) = TrE
(
USE (ρS(0)⊗ ρE(0))U †

SE

)
. (1.33)

We will write this equation using the Kraus representation [20]. We equip ourselves with an
orthonormal basis for the Hilbert space of the environment, {|ek⟩}, such that the initial state of
the environment is ρE(0) = |e0⟩⟨e0|. We now can calculate the partial trace in (1.33)

ρS =
∑
k

⟨ek|USE (ρS(0)⊗ |e0⟩⟨e0|)U †
SE |ek⟩. (1.34)

We can rearrange the previous equation into a compact form

ρS =
∑
k

KkρS(0)K†
k, (1.35)

where we have introduced the Kraus operators

Kk ≡ (1S ⊗ ⟨ek|)USE(1S ⊗ |e0⟩). (1.36)

The Kraus operators are not unique as they can be defined for any arbitrary choice of basis for
the environment. They satisfy the trace-preserving relation

∑
k

K†
kKk = 1 (1.37)

We can interpret the equation for the time-evolution of the reduced state as the action of a
quantum channel E

ρS =
∑
k

KkρS(0)K†
k = E(ρS(0)). (1.38)

E is a map acting on the state of the system, and as it maps a density matrix to a density matrix,
it is a completely-positive trace-preserving map (CPTP). Treatment of E as an environment
typically means that its Hilbert space dimension is far larger than that of the system, in which
case it can become quickly intractable to find the Kraus operators that implement a quantum
channel. However, we can calculate the reduced state of the system with a tractable equation
that requires access only to information about the system itself using a few approximations. Firstly,
we take the Born approximation

ρSE ≈ ρS(t)⊗ ρE(0). (1.39)

This implies that the for the purposes of time evolution that correlations between the system
and the environment are not relevant, and global state is approximately separable at all times.
The Markov approximation assumes that the environment has no memory of past interactions,
that these correlations decay at a timescale much faster than the system’s evolution. Finally we
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take the rotating wave approximation to neglect fast-oscillations corresponding to counter-rotating
terms in the time evolution of the density operator. This can be taken when the timescale of the
system Hamiltonian is much shorter than the interaction Hamiltonian. These approximations hold
remarkably well for many quantum systems of interest. As an example let us choose an atomic
transition - say the hydrogen-alpha transition. Here the system is the hydrogen atom and the
environment it is interacting with is the electromagnetic field. The timescale for the transition,
or the inverse of the decay rate, is of order temission ∼ 10−9s, while both the period of the
656.28nm photon that is emitted and the correlation timescale of the electromagnetic field is of
order 10−15s. The large separation of timescales mean that all three approximations are quite
natural in this setting. Correlations between the system and environment fall off rapidly compared
to the timescale of the dynamics we care to model (the atomic transition). In reality the global
state of the system and environment, (1.39), is not truly separable, the emitted photon causes
correlations between the system and environment to grow. Physically we may think of the photon
as travelling so far from the atom that the correlations it carries are no longer relevant for the
future transitions of the system, meaning for all intents and purposes the global state is separable
for the dynamics we are interested in. The sum of these approximations is to allow us to enforce
the Markov semi-group property to the dynamical map E [21]

Et+s = EtEs. (1.40)

An exponential form, Et = exp{Lt} naturally satisfies the semigroup property

eL(t+s) = eLteLt. (1.41)

This implies that the equation of motion for the reduced state will have the following form

d

dt
ρS(t) = L(ρS(t)). (1.42)

We can derive the most general form of this generator L of the dynamical semigroup. We need
a complete basis {Oi} for our space of operators (which has dimension N2 for a Hilbert space of
dimension N). The elements are orthogonal with respect to the trace-norm

Tr{OiOj} = δij . (1.43)

We take the last element of the basis to be the identity

ON2 = 1√
N
1, (1.44)
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which implies the other elements are traceless. We can write the quantum channel (1.5) in this
basis as

Et(ρS) =
N2∑
i,j=1

pijOiρSO
†
j , (1.45)

with
pij =

∑
k

Tr
[
OiK

†
k

]
Tr
[
KkO

†
j

]
. (1.46)

The matrix of coefficients, pij = pij(t), is Hermitian and positive. We can expand L for a small
time-step (and leaving the time argument ρS = ρS(0) as implicit)

LρS = lim
ϵ→0

1
ϵ
{Eϵ(ρS)− ρS} (1.47)

= lim
ϵ→0

{ 1
N

pN2N2(ϵ)−N
ϵ

ρS

+ 1√
N

N2−1∑
i=1

(
piN2(ϵ)

ϵ
OiρS + pN2i(ϵ)

ϵ
ρSO

†
i

)

+
N2−1∑
i,j=1

pij(ϵ)
ϵ

OiρSO
†
j

}
. (1.48)

We can redefine the coefficients for this small time-step as

aN2N2 = lim
ϵ→0

pN2N2(ϵ)−N
ϵ

, (1.49)

aiN2 = lim
ϵ→0

piN2(ϵ)
ϵ

, i = 1, . . . , N2 − 1, (1.50)

aij = lim
ϵ→0

pij(ϵ)
ϵ

, i, j = 1, . . . , N2 − 1, (1.51)

We group elements of our operator basis in terms of these redefined coefficients as

O = 1√
N

N2−1∑
i=1

aiN2Oi. (1.52)

G = 1
2N aN2N21S + 1

2
(
O† +O

)
. (1.53)

We can write a Hermitian operator from O

H = 1
2i
(
O† −O

)
, (1.54)
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which we recognise as the Hamiltonian of the system. This leaves us with

LρS = −i[H, ρS ] + {G, ρS}+
N2−1∑
i,j=1

aijOiρSO
†
j . (1.55)

As the map is CPTP, we have

TrS LρS = d

dt
(Tr[ρS ]) = 0. (1.56)

Taking the trace of (1.55) and setting it to zero gives

TrS(−i[H, ρS ] + {G, ρS}+
N2−1∑
i,j=1

aijOiρSO
†
j) = 0. (1.57)

The trace of a commutator is zero, so we can eliminate the term that involves the Hamiltonian.
After some manipulation, using the linearity of the trace and its cyclic property, we have

TrS(2GρS +
N2−1∑
i,j=1

aijO
†
jOiρS) = 0. (1.58)

As ρS has non-zero trace, we must have

G = −1
2

N2−1∑
i,j=1

aijO
†
jOi. (1.59)

This gives us the following form for the generator

LρS = −i[H, ρS ] +
N2−1∑
i,j=1

aij

(
OiρSO

†
j −

1
2
{
O†
jOi, ρS

})
. (1.60)

The coefficients are real and positive, and therefore the coefficient matrix aij can be diagonalised
by some unitary transformation Ud to leave it with diagonal terms µi. The basis operators Oi
also transform under this rotation to a set we denote as {Li}. The result of this transformation
is the Gorini-Kossakowski-Sudarshan-Lindblad master equation [21], henceforth the GKSL master
equation

LρS = −i[H, ρS ] +
N2−1∑
i

µi

(
LiρSL

†
i −

1
2
{
L†
jLi, ρS

})
. (1.61)

We refer to the operators Li as jump operators, and µi as the coupling strength of the open system
channel. We note that we recover the Liouville-von Neumann equation of motion in the limit that
all coupling strengths are zero, resulting in a Hermitian generator for the dynamics. The terms
proportional to µi are non-Hermitian, and have complex eigenvalues, resulting in phenomena such
as decoherence. The GKSL equation is a powerful tool as it provides a theoretical framework for
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quantum systems that are subject to noise and dissipation, as seen in experiment.

1.6 Overview

We will leverage all the above concepts throughout the remainder of the thesis. In Chapter 2
we will work in a closed system framework, exploring the energetic cost of using counterdiabatic
control for quantum systems that exhibit a level crossing and continuous phase transition. We
will leverage insights from non-equilibrium quantum physics to propose a novel counterdiabatic
protocol that is highly effective while reducing the resource overheads for control compared to
typical counterdiabatic methods. As we will also see, our protocol also allows for the natural
relaxation of the system in question, which in certain cases means we outperform the more resource
intensive “typical” schemes.

In Chapter 3 we will explore control in both a closed and open setting, this time with the
aim of implementing quantum gates. We will again utilise the adiabatic gauge potential, but also
introduce two more approaches to achieve transitionless dynamics. We compare and contrast the
resource intensity, the robustness to timekeeping errors, and the susceptibility to environment-
induced errors of each protocol when the dynamics are modelled by the GKSL master equation.

In Chapter 4 we leave the closed framework of quantum mechanics behind and embrace open
system dynamics to explore how the environment can explain the transition from quantum to
classical states. This transition is explained by the framework of Quantum Darwinism (QD). We
will explore whether multiple open system channels acting on a system can support QD and leave
the system in a classically objective state. Our novel insight is that it is the role of commutativity
of the interaction Hamiltonians between the system and each of the modelled environments which
allows us to discern whether competing channels allow for Darwinism or simply cause the state of
the system to thermalise through a process known as information scrambling.

Finally, in Chapter 5 we will propose a measure of the complexity of dynamics that is governed
by the GKSL master equation, which we denote as the operator spread complexity. We work in
the Heisenberg picture, utilising the adjoint GKSL master equation to explore the evolution of a
given test operator. We see that for chaotic systems, the operator rapidly grows in support in
Hilbert space. This growth in support can be mitigated by open system effects, which tend to
drive the operator towards more “simple” dynamics. We provide a proof that demonstrates that
the operator spread complexity is minimised for a particular choice of basis for the operator spread
complexity, namely the Krylov subspace.
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Chapter 2

Control in the Impulse Regime

To fully exploit the promises of quantum devices [22, 23], efficient and effective techniques to
achieve coherent control are crucial. Adiabatic methods are inherently stable but can require
long timescales, particularly for many-body systems. These timescales are potentially longer than
the decoherence time of the physical platform that realises the process of interest. Numerous
approaches have been developed to control quantum systems quickly and to high precision. These
additional controls imply an energetic cost for their implementation. A natural question arises -
are we able to reduce the cost of control while still being able to implement processes quickly and
with high precision? This chapter explores how we can answer this affirmatively, for a specific class
of systems that are ubiquitous in quantum technology. Section 2.1 provides a background to the
problem of control and energy efficiency, while section 3.1 outlines some of the technical framework
that we leverage to minimise control time. The remainder of the chapter constitutes the original
work found in [1], to which I contributed both theoretical work and each of the figures used below,
with additional theoretical contributions and guidance from Steve Campbell and Anthony Kiely.

2.1 Background

In recent years, a number of techniques have been developed to control quantum systems. They
can be broadly bisected into: (i) optimal control techniques [24], which efficiently find bespoke
controls for a given task, often numerically, and (ii) shortcuts-to-adiabaticity [25,26] which repro-
duce the same high fidelity as adiabatic passage but in significantly shorter times and are often
analytic in nature. Recently, hybrid approaches have been shown to be highly effective [27–32].

Counterdiabatic driving [17, 33], as discussed in Chapter 1.2, is a particularly simple and
effective shortcut-to-adiabaticity, achieving perfect control by adding auxiliary terms to a given
system’s Hamiltonian. Such an additional control term heuristically implies an overall increase
in resources needed to evolve the system. Various cost measures have been developed [34–40]
to characterise this. These measures have been shown to be closely related to quantum speed
limits [39,41,42] and relevant for other control techniques [43–46]. In the case of critical systems
with vanishing energy gaps, these cost measures indicate that the energetic resources needed to
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implement high fidelity control diverge. Nevertheless, such systems offer significant promise in,
for example, critical metrology [47], quantum annealers [48], and adiabatic quantum computing
[49, 50]. Developing techniques which reduce the resource intensiveness while still achieving high
fidelity control for critical systems is therefore timely for next-generation quantum technologies.

Topological defects were shown to be inevitable in field theories as a result of phase transitions
in cosmological settings [51]. Remarkably, it was established that similar defect formation should
occur in all phase transitions traversed withinin a finite time and it is precisely the critical slowing
down in the vicinity of a phase transition that characterises the non-equilibrium dynamics of the
system in terms of the equilibrium critical exponents [52]. Now, the celebrated Kibble-Zurek
mechanism (KZM) has been applied in a great diversity of settings [53–59]. It predicts that the
overall driven dynamics is split into two separate regimes. The evolution is “adiabatic” where the
energy gap remains sufficiently large and the system can be driven without significant excitations
being created; and “impulsive" when the system’s response freezes-out and defects rapidly form.

We exploit the insight provided by the KZM to devise an efficient strategy for achieving high
fidelity control. We limit the application of the counterdiabatic control term to the duration of the
system’s impulse regime, achieving significant energy savings without drastically sacrificing efficacy.
While the system does generate some intermediate defects during the uncontrolled evolution in the
adiabatic regimes [60], these regions are precisely those in which the KZM predicts that the system
is able to relax. By restricting the application of counterdiabatic control to the impulse regime,
we are still able to benefit from the good performance of adiabatic passage while simultaneously
reducing the resource overheads compared with full evolution control.

2.2 Kibble-Zurek mechanism

As we have outlined, the KZM provides a framework to identify when a system crosses from the
adiabatic to impulse regime and vice-versa. Let us formally introduce the mechanism. Consider
a system H(g) driven by an external field g(t). We are interested in systems with a continuous
second-order phase transition at g=gc. Such a phase transition is typically described by equilibrium
quantities [61,62]

ξ(g) = ξ0
|g − gc|ν

, (2.1)

τ(g) = τ0
|g − gc|zν

. (2.2)

Here, ξ and τ are the correlation length and relaxation time for our system, with the scaling
for both as the driving parameter is changed given by the spatial exponent ν and the dynamical
critical exponent z. These critical exponents define the universality class of the continuous phase
transition. It is clear that both the relaxation timescale and correlation length in our system diverge
as we approach the critical point, reducing the ability of the system to “heal”, or equilibriate out
defects in its vicinity. More intuitively, we can understand this by recasting the relaxation timescale
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of the system in terms of the gap, γ, between the two lowest energy levels of the system

γ(t) = E1(t)− E0(t), (2.3)

where E1(t) and E0(t) are the ground and first-excited states, respectively. In natural units, the
relaxation timescale, τ(t) is then

τ(t) = 1
γ(t) . (2.4)

For critical systems, γ(t) ∝ g(t) [63]. The relaxation timescale reflects the ability for the system
to react to changes in the driving parameter. As we get closer to the critical point during the
ramp, the gap gets smaller and the relaxation timescale diverges. The system reacts slowly to
perturbations, a phenomenon known as critical slowing down. As a result, defects arise in the state
of the system. Far from the critical point, the gap is larger, allowing the system to easily react to
changes in the ramp and evolve adiabatically. These two regimes are known as the impulse and
adiabatic regimes respectively, and one of the key results of the Kibble-Zurek mechanism is the
prediction of the crossover between the regimes. The transition times, t∓, are defined as when
the relative rate of parameter change is comparable to the relaxation time. Formally, they are the
solutions of ∣∣∣∣g(t∓)− gc

ġ(t∓)

∣∣∣∣ = τ(t∓). (2.5)

We substitute (2.2) into (2.5) and rearrange to find

|g(t∓)− gc| = τ
1

zν+1
0 |ġ(t∓)|

1
zν+1 . (2.6)

We consider a linear external field given by g(t) = g0 + gd(t/τQ). For convenience we assume a
symmetric ramp, taking g(τQ/2) = gc. This fixes gd = 2(gc − g0). With this condition, we have

∣∣∣∣∣2(gc − g0) t∓
τQ
− (gc − g0)

∣∣∣∣∣ = τ
1

zν+1
0

∣∣∣∣∣2(gc − g0) 1
τQ

∣∣∣∣∣
1

zν+1

. (2.7)

Multiplying through by τQ/2(gc − g0) and rearranging gives

t∓ = τQ
2 ∓ τ

1
1+zν

0

(
τQ

2 |g0 − gc|

) zν
1+zν

. (2.8)

For the particular ramp we have defined, we can extract the adiabatic-impulse crossover times for
a critical system given its universality class, and the dimensionful parameter τ0 which is dependent
on the exact system at hand. For t ∈ [t−, t+], the system is in the impulse regime, where we
expect the majority of diabatic transitions to occur. The correlation length at the crossover time
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is

ξ = ξ0

(
2τ0 |g0 − gc|

τQ

) −ν
1+zν

. (2.9)

The density of defects for a system of dimension d then scales as ξ−d ∼ τ
− νd

1+zν

Q . The dimensionful
parameter τ0 is dependent on the relevant energy gap of the specific model being employed. For
some systems the gap is known explicitly, e.g. in the Landau-Zener model considered in Sec. 2.4,
and therefore the exact expression for the relaxation time and resulting impulse regime can be
employed. In the case of genuine many-body settings, such as the transverse field Ising model
considered in Sec. 2.5, the gap can be approximated.

2.3 Control in the impulse regime

The KZM demonstrates that unwanted excitations or defects are mainly generated within the
impulse regime, with the system evolving almost adiabatically otherwise. If our goal is to ramp
this system quickly through its avoided crossing while remaining in its ground state, we will need
to introduce some control. We will achieve this using the aforementioned counterdiabatic method,
which we now briefly recap. Consider a Hamiltonian with spectral decomposition

H0(t) =
∑
n

ϵn(t) |ϕn(t)⟩ ⟨ϕn(t)| , (2.10)

with ϵn(t) and |ϕn(t)⟩ the instantaneous energy eigenvalues and eigenstates, respectively. We will
employ the counterdiabatic Hamiltonian [17],

HCD(t) = i
∑
n

[
|∂tϕn(t)⟩⟨ϕn(t)| − ⟨ϕn(t)|∂tϕn(t)⟩ |ϕn(t)⟩⟨ϕn(t)|

]
. (2.11)

Evolving the system using the total Hamiltonian H0 + HCD forbids any diabatic transitions.
Adiabatic timescales diverge in critical systems due to vanishing energy gaps in the thermodynamic
limit. Employing Eq. (2.11) for a given initial state allows one to adiabatically traverse a quantum
phase transition (or avoided crossing in the case of the Landau-Zener model) in finite time [28,
64, 65]. However, the magnitude and complexity of the control fields near the critical point grow
significantly with system size [34,66] implying that control comes at a high energetic cost [39,41,
43].

The intensity of this additional control field provides a meaningful of the energetic cost of the
control [34, 66] 1

C = 1
τQ

∫ τQ

0
ds∥HCD(s)∥, (2.12)

1In Ref. [34] the cost is defined as C= 1
τQ

∫ τQ

0 ds∥HCD(s)∥n, where the choice of n depends on the physical
implementation. Here, we take n=1 for simplicity and remark that qualitatively similar behaviors are exhibited for
other suitable choices of n.
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where ∥·∥ is the Frobenius norm. The counterdiabatic Hamiltonian can physically be implemented
by an external field coupled to the qubit, for example the magnetic field. We can then interpret
this form of the cost as the time-averaged integrated power of the control field. It is clear that C
scales as ∼ 1/τQ [34] from the form of HCD. Note that the cost is lower bounded as

C ≥ ℏ
τQ

∫ g(τQ)

g0
W [g]dg, (2.13)

where W [g] =
√∑

n,m ̸=n

∣∣∣ ⟨ϕm|∂gH0|ϕn⟩
ϵn−ϵm

∣∣∣2. The counterdiabatic Hamiltonian is inversely propor-
tional to the level spacings in our system, as we demonstrated in (6.1). As a result we expect the
cost to diverge as the gap closes and the matrix elements of the AGP correspondingly get large. In
cases where the gap closes entirely, one may carefully regularise the AGP to remove degeneracies
and keep it analytic. As the systems we will consider have a finite gap between the ground state
and first excited state for finite system sizes we can neglect such a treatment of the AGP. In what
follows, we consider a linear ramp for simplicity since any monotonic choice of g achieves the
minimum of the cost measure employed.

In order to minimise energetic cost we propose limiting the use of a control strategy to only
during the impulse regime, as opposed to employing control for the entire evolution. To test the
effectiveness of this approach, we consider the Hamiltonian

Hκ(t) = H0(t) + [δ1κ + δ2κS(t)]HCD(t), (2.14)

where κ∈{0, 1, 2} corresponds to uncontrolled, fully controlled, and control only in the impulse
regime as recognised by the KZM, and δij is the Kronecker delta. The crossover times for when the
system crosses from the adiabatic to impulse regime and back are denoted as t∓, as given by Eq.
(2.8). The control field HCD is smoothly turned on during the impulse regime with a switching
function S(t) = f(t − t−)f(t+ − t), where f(x) = 1/ (1 + e−mx) is the logistic function and m
a constant determining the abruptness of the switch. The relative energetic savings achieved by
employing only impulse control (κ = 2) is δE/C, where δE is the absolute energetic savings

δE = 1
τQ

∫ τQ

0
ds [1− S(s)] ∥HCD(s)∥,

≈ 1
τQ

[∫ t−

0
ds∥HCD(s)∥+

∫ τQ

t+
ds∥HCD(s)∥

]
. (2.15)

As the quench time becomes shorter, τQ→0, the impulse regime dominates {t−, t+}→{0, τQ}.
Clearly then for impulse control, we should expect δE→ 0 and F(τQ)→ 1 in the short quench
time limit. For long quench times, τQ→∞, the impulse regime vanishes t∓→ τQ/2. Therefore
the relative savings δE/C → 1 and F(τQ)→ 1 due to the adiabatic theorem. As a rapid quench
is dominated by the impulse regime and therefore would require control for the entire evolution,
we do not expect much savings in this limit. Conversely, in the long time limit we will also expect
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little in savings as adiabatic dynamics are achieved for most of the evolution without the need for
control. We expect the protocol to be most advantageous in the intermediate regime, where we
can establish a clear crossover between the adiabatic and impulse dynamics.

2.4 Landau-Zener Model

We begin our analysis with the Landau-Zener (LZ) model. It describes the transitions of a two-
level quantum system interacting with an external field as it passes through resonance [67]. The
Hamiltonian is

H0(t) = ℏ∆σx + ℏg(t)σz, (2.16)

where ∆ > 0 determines the minimal energy gap at the avoided crossing. In what follows we
take ℏ = 1. The Landau-Zener model is notable as, despite not exhibiting a bonafide quantum
phase transition, it captures all basic features of the KZM [63, 68–70], including recovering the
expected critical exponents: ν = 1 and z = 1. Alongside this, it admits an analytical derivation of
is transition amplitude. We shall outline the derivation of both features. Generally, we can write
the state of the system as a complex combination of its eigenvectors

|ψ(t)⟩ = p0(t) |g⟩+ p1(t) |e⟩ , (2.17)

where we have denoted the instantaneous ground and excited states as |g⟩ and |e⟩, respectively.
The evolution of this state by Schrödinger equation results in a pair of coupled differential equations

iṗ0 = g(t)p0(t) + ∆p1(t), (2.18)

iṗ1 = ∆p0(t)− g(t)p1(t). (2.19)

We make the following change of variables

p̃0(t) = e+i
∫
g(t)dtp0(t), p̃1 = e−i

∫
g(t)dtp1(t), (2.20)

which leads to the coupled differential equations

i ˙̃p0(t) = ∆e+i
∫
g(t)dtp̃1(t) (2.21)

i ˙̃p1(t) = ∆e−i
∫
g(t)dtp̃0(t) (2.22)

Differentiation allows us to decouple the equations, giving

i ¨̃p0(t)− ig(t) ˙̃p0(t) + ∆2p̃0(t) = 0 (2.23)
i ¨̃p1(t) + ig(t) ˙̃p1(t) + ∆2p̃1(t) = 0 (2.24)
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We consider a detuning function to be linear with a positive slope, g(t) = αt, α having dimensions
of frequency squared. In doing this we also set the crossing to be at t = 0. The amplitudes are
constrained by |p0|2 + |p1|2 = 1 at all times, we need only solve for one of them. With the change
of variables

γ(t) = ei
αt2

4 p̃1(t), (2.25)

we can write (2.24) as

γ̈ + (α
2t2

4 − iα2 + ∆2)γ = 0 (2.26)

With one more change of variables [67], z ≡ √αe−iπ/4t and x ≡ i∆2/α, we can write (2.26) as

∂2
zγ(t) + (x+ 1

2 −
z2

4 )γ(t) = 0. (2.27)

This is the standard form of the Weber equation, which has two independent solutions, γ(t) =
D−x−1(−iz) and γ(t) = Dx(z) where Dx(z) is the parabolic cylinder function. This gives the
solution for the amplitude as

p0(t) = (aD−x−1(−i
√
αe−iπ/4t) + bDx(

√
αe−iπ/4t)eigdt2/4 (2.28)

where a and b are fixed by initial conditions. By taking the initial and final times to ∓∞ respec-
tively, the asymptotic properties of the parabolic cylinder functions give rise to the Landau-Zener
formula

|p0(t→∞)|2 → 1− e−2 π∆2
α . (2.29)

This equation analytically predicts the probability of a diabatic transition from the initial state the
system is in. For our purposes we will consider initialising the Landau-Zener model in its ground
state. We will drive the system for some time, and a successful protocol is one that leaves the
system in the ground state afterwards. We see from the Landau-Zener formula that for a finite
driving rate, we will have some transitions away from our instantaneous ground state. Of course,
one could drive with a slow (in our case, linear, but in priniciple arbitrary) ramp, taking α ≪ 1,
which would lead to long times to implement any protocol in physical settings.

Next we need the control term for the LZM. We first write the exact energy eigenstates of the
Landau-Zener model

|ϕ0(t)⟩ = cos [θ(t)] |0⟩+ sin [θ(t)] |1⟩ , (2.30)
|ϕ1(t)⟩ = sin [θ(t)] |0⟩ − cos [θ(t)] |1⟩ , (2.31)

where tan [θ(t)] =−
[
g(t) +

√
∆2 + g(t)2

]
/∆ and the energy gap between ground and excited

states is γ=ϵ1 − ϵ0=2
√
g(t)2 + ∆2. It is clear that its minimum is at g(tc) = 0, which occurs
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Figure 2.1: Impulse regime for the Landau-Zener model: (a) Comparison between relaxation
timescale τ (red solid line) and the relative rate of external parameter change |g/ġ| (blue dashed
line) for a quench duration of τQ∆ = 2. Intersection gives critical times t∓ (green/black dots)
(b) Impulse regime times t∓ (green dotted and black dot-dashed lines respectively) for different
quench times τQ. (c) Final state fidelity versus quench time τQ and duration of counterdiabatic
driving 2η. Impulse regime η = µ (red points), g0 = −10∆ and m = 400∆−1.

halfway through our chosen ramping protocol. The counterdiabatic Hamiltonian is then [17]

HCD(t) = ℏθ̇σy = − ġ(t)∆ℏ
2 [∆2 + g(t)2]σy. (2.32)

In Fig. 2.1(a) we show the adiabatic-impulse approximation of the KZM for a representive quench
time of τQ∆=2. The relaxation time of the LZM is shown in blue, while the rate of change of the
driving field is shown in red. Where they intersect denotes the crossover time between the regimes,
shown by the green and black dots. Note that the relaxation time of the system is the inverse
of the gap, allowing us to recognise the avoided crossing of the Landau-Zener model where the
gap is at its minimum. Solving for the real roots of Eq. (2.5) we find the exact adiabatic-impulse
crossover time as given by the KZM to be t∓ =τQ/2∓ µ where

µ = 1
2

√√√√√τ4
Q∆4 + 4g2

0τ
2
Q − τ2

Q∆2

2g2
0

. (2.33)
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Note that the impulse regime has a duration 2µ and 0≤µ≤τQ/2. For short operation times, the
behaviour is µ ≈

√
τQ/ |g0|/2 which matches KZM scaling predictions for the ν=z=1 universality

class. Fig. 2.1(b) shows the impulse regime for a linear ramp of fixed magnitude as we vary the
quench duration. The impulse regime is shown in the shaded region. It highlights that slow ramps
recover effectively adiabatic dynamics with the width of the impulse regime closing as τQ grows,
while for fast ramps the system is effectively always in the impulse regime. The performance of
each protocol will firstly be quantified by focusing on the fidelity of the state of the system, |ψ(t)⟩,
evolving according to Hamiltonian Eq. (2.14) with the instantaneous ground state, i.e.

F(t) = |⟨ψ(t)|ϕ0(t)|2 , (2.34)

We assume |ψ(0)⟩= |ϕ0(0)⟩ as the initial condition in all cases i.e. the system starts in the ground
state. In Fig. 2.1(c) we verify that control in the impulse regime is crucial for achieving a high
fidelity final state. We implement a protocol in which the counterdiabatic control field is switched
on for a duration of η before and after the system reaches the avoided crossing, i.e. HCD is
switched on/off at

t̃∓ = τQ
2 ∓ η, (2.35)

where η ∈ [0, τQ/2]. This smoothly interpolates between the three cases captured by Eq. (2.14)
with η = {0, τQ/2, µ} corresponding to κ = {0, 1, 2} respectively. The red-dashed lined delineates
the adiabatic-impulse crossover and we see that there is a precipitous drop when the control is
applied for a duration smaller than the impulse regime, i.e. η<µ. For protocols with η>µ we see
that there is little gain in target fidelity by continuing to employ the counterdiabatic term.

We now take a more systematic look at the three protocols, having established that high-
fidelity final states are principally reliant on implementing control when the system is in the
impulse regime. The instantaneous fidelity with the ground state for the three cases are shown in
Fig. 2.2 for various quench durations. The evolution under full counterdiabatic control remains in
the ground state at all times by construction and therefore results in a perfect fidelity. If no control
is applied the system maintains a high instantaneous fidelity initially, but this rapidly decreases
once it enters the impulse regime, delineated by the orange shaded area. For short quench times,
once the fidelity drops off there is little revival. However, for sufficiently long times, where the
impulse regime is short enough that significant defects are not generated (e.g. τQ = 25∆−1 in
Fig. 2.2(d) [dashed, blue curve]), after an initial dip the fidelity increases again outside impulse
regime. This dip and revival behaviour is a generic feature of adiabatic passage and is a result of
the adiabatic error on the instantaneous fidelity scaling as 1/τQ, while the error on the final state
fidelity scales as 1/τ2

Q [60].
For impulse control (solid, red curves) the instantaneous fidelity initially follows the uncon-

trolled case. However, when entering the impulse regime the counterdiabatic control is switched on
which negates any non-adiabatic transitions between the energy eigenstates and therefore freezes
the instantaneous fidelity in this region. By freezing the system only in the impulse regime we
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Figure 2.2: Fidelity of the evolving state with the instantaneous ground state of the Landau-Zener
model for no control (blue dashed line), impulse control (red solid line) and full control (green
dotted line), for different quench times. Orange shaded area indicates the impulse regime [t−, t+].
(a) τQ∆ = 1 (b) τQ∆ = 5 (c) τQ∆ = 10 (d) τQ∆ = 25. Other parameters: g0 = −10∆ and
m=400∆−1

are able to suppress most of the defects from forming such that the resulting final free evolution
often leads to excellent state transfer. The resulting final fidelities are comparable to the case of
full control despite the control field only being on for a fraction of the total quench time. As we
increase τQ, resulting in a closing of the impulse regime, our impulse control scheme no longer
provides an advantage over the uncontrolled evolution. Upon exiting the impulse regime the dy-
namics is adiabatic, leading to approximately constant fidelity, as seen in Fig. 2.2(d). Therefore
any population lost in the first stage cannot be recovered. Note that we have focused on symmetric
ramps for simplicity, but the strategy of impulse control can be easily generalised to asymmetric
ramps.

Turning our attention to the energetic savings, Fig. 2.3 demonstrates that significantly better
efficiency can be achieved with only a small loss in final state fidelity. In panel (a) we show the
loss of final state fidelity, i.e. 1 − F , achieved for impulse control as a function of total quench
duration and for reference we also show the no-control case which follows the well known Landau-
Zener formula exp

(
−π∆2/ |ġ|

)
[67, 71]. For large quench durations (corresponding to a small

impulse regimes) τQ∆∼25, implementing control turns out to be detrimental. For small quench
times, where the impulse regime dominates most of the protocol, the loss in the final fidelities are
vanishingly small since this case overlaps significantly with the full control case. As τQ is increased

23



0 5 10 15 20 25
10-7

10-5

10-3

10-1

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3: Comparison between final state fidelity using impulse control and the resulting energetic
savings. (a) Loss of fidelity at the end of the process using impulse control (red solid line). Also
shown is the result after no control (blue dashed line). (b) Difference in energetic cost δE
(green dotted line) and relative difference in energetic cost δE/C (black dot-dashed line). Other
parameters: g0 =−10∆ and m=400∆−1.

we see a small increase in the loss of fidelity, which nevertheless remains ≲ 0.001, indicating that
the protocol is still highly effective. Impulse control is shown to be particularly effective around
τQ∆ = 5 for the chosen final target state. Panel (b) demonstrates that while maintaining a
high level of efficacy, impulse control allows for a significant reduction in the energetic cost, with
fidelity losses of the order ∼10−5 while making a relative energetic saving of ∼40%. The absolute
energetic saving clearly tends to zero in the short and long quench time limit and the relative
energetic savings tends to 1 in the long quench time limit. We can analytically derive both the
cost of control and the relative savings from truncating the control in time to the impulse regime.
We assume for simplicity that S(t) is exactly a step function and g0 < gc. Integrating the norm
of the counterdiabatic term in the impulse regime gives∫ t2

t1
∥HCD(s)∥ds =

√
2
{

arctan
[
g(t2)

∆

]
− arctan

[
g(t1)

∆

]}
. (2.36)

Substitution of this into our expression for the cost given by (2.12) gives

C = −
√

2
τQ

arctan
(
g0
∆

)
. (2.37)

Similarly, the relative savings in this case are

δE =
√

2
τQ

{
arctan

[
g(t−)

∆

]
− arctan

(
g0
∆

)}
. (2.38)
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Using Eq. (2.15), we can then find the relative savings

δE/C = 1− arctan [g(t−)/∆]
arctan (g0/∆) . (2.39)

The above analytic expressions align with the numerical results shown in Fig. 2.3 (b).

2.5 Transverse-Field Ising Model

We now turn our attention to the transverse field Ising model (TFIM). While the Landau-Zener
model behaves according to the predictions of the Kibble-Zurek mechanism, it does not strictly
have a second-order phase transition, and instead has an avoided crossing with a finite gap for
finite ∆. The TFIM on the other hand is gapless at its critical point in the thermodynamic limit.
We take the following Hamiltonian

H0(t) = −ω
N∑
i=1

[
g(t)σxi + σzi σ

z
i+1
]
. (2.40)

We impose periodic boundary conditions σx,y,zN+1 = σx,y,z1 and take the number of spins, N , to
be even. The TFIM is in the same universality class as the Landau-Zener model, exhibiting its
second-order quantum phase transition at gc=1 [70] between a ferromagnetic and a symmetric
paramagnetic phase. It has a Z2 symmetry, generated by S =

∏N
i=1 σ

x
i

Sσxi = σxi , (2.41)
Sσzi = −σzi . (2.42)

The model has two competing terms, we can first look at the interacting part

HF = −ω
N∑
i=1

σzi σ
z
i+1. (2.43)

This term has a degenerate groundstate, it can be a linear combination of the following two
eigenvectors

|+⟩ = |↑↑ ... ↑⟩ , (2.44)
|−⟩ = |↓↓ ... ↓⟩ . (2.45)

For our purposes we will break the Z2 symmetry in this phase, to do so we will add a small biasing
field, −ϵσx, with ϵ > 0. This leaves us with a ferromagnetic ground state, i.e. one that favours
spins aligning. The other term in the Hamiltonian is

HP = −ωg
N∑
i=1

σx. (2.46)
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Its groundstate is
|g⟩ = |→→ ...→⟩ . (2.47)

This unique paramagnetic ground state preserves the Z2 symmetry. The interesting physics comes
into play as the two terms compete as g is ramped. The system cannot smoothly interpolate
from one groundstate to the other. We can make this a bit more precise with a small amount of
perturbation theory. We prepare the system deep in the paramagnetic regime, i.e. g ≫ 1. Here
HP dominates, and we note that an excitation above the ground state |g⟩ involves flipping a single
spin. There are N possible spins to flip, we denote each state with a single spin-flip at site n as
|n⟩,

|n = 2⟩ = |→←→ ...→⟩ . (2.48)

From (2.46) we can see that it takes 2ωg units of energy for this single spin flip. We consider
HF as the perturbation. The action of σZi is σZi |→i⟩ = |←i⟩, so the action of the ferromagnetic
term is naturally

σZi σ
Z
i+1 |←i→i+1⟩ = |→i←i+1⟩ , (2.49)

i.e. it transfers the spin flip along one site. We can write an effective Hamiltonian for this first
order perturbation as

Heff |n⟩ = −ω(|n+ 1⟩+ |n− 1⟩) + (E0 + 2ωg) |n⟩ , (2.50)

where we denote the ground state energy of the TFIM as E0. We can solve this in momentum
space, with the discrete Fourier transform

|k⟩ = 1√
N

N∑
j=1

e−ikj , (2.51)

where we have taken the lattice spacing as unity and that the wavenumber is discritised as k =
2πn/N for n = 1, ..., N . This diagonalises (2.50), giving

Heff |k⟩ = (2ωg − 2ω(g − cos k) + E0) |k⟩ . (2.52)

The dispersion relation for the spinons, our excitations in momentum space of the effective theory,
can read off as

ϵ(k) = 2ω(g − cos k)
limk→0≈ ∆ + Jk2, (2.53)

where ∆ = 2ω(g − 1). The gap in the spinon dispersion goes to zero at g = 1, the spin flip
excitations condense. A similar calculation can be carried out from the other limit of the model,
taking HF as the Hamiltonian and HP as the perturbation. Here the excitations are domain
walls in the ground state, and similarly the perturbation at first-order is a kinetic term for these
excitations. What is important is that in both cases we end up with a prediction of something
interesting happening in the ground-state of the theory at g = 1. To find the exact spectrum of
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the TFIM we employ the Jordan-Wigner transformation. First, we rotate Eq. (2.40) around the
y axis to map σzi → σxi and σxi → −σzi and substituting

σxj = 1− 2c†
jcj , (2.54)

σzj = −(cj + c†
j)
∏
m<n

(
1− 2c†

mcm
)
, (2.55)

where c†
j and cj and are fermionic creation and annihilation operators respectively at site j.

We again perform a discrete Fourier transformation ck = 1√
N

∑
j e

−ikjcj . This decouples the
Hamiltonian as H0 =

⊕
k>0 Ψ†

kH0,kΨk where Ψ†
k =

(
c†
k, c−k

)
. Each momentum subspace is

governed by a LZ type Hamiltonian

H0,k = hxkσ
x
k − hzk(g)σzk, (2.56)

where hzk(g) = 2ω[g−cos k] and hxk = 2ℏω sin k. Note that the momentum only takes on discrete
values kn = π(2n−1)

N for n = 1, . . . , N/2. The eigenstates of H0,k are

|ϕ0,k(t)⟩ = cos [θk(t)] |0⟩k + sin [θk(t)] |1⟩k , (2.57)
|ϕ1,k(t)⟩ = sin [θk(t)] |0⟩k − cos [θk(t)] |1⟩k , (2.58)

where tan [θk(t)] =
[
hzk −

√
hx,2k + hz,2k

]
/hxk. The ground state of the system is then given by

|ϕ0(t)⟩ =
⊗

k>0 |ϕ0,k(t)⟩. If the evolved state of the system is written as |ψ(t)⟩ =
⊗

k>0 |ψk(t)⟩,
then the fidelity becomes

F(t) = |⟨ψ(t)|ϕ0(t)⟩|2 =

∣∣∣∣∣∣
∏
k>0
⟨ψk(t)|ϕ0,k(t)⟩

∣∣∣∣∣∣
2

. (2.59)

To protocol we wish to implement is to start in the ground state of the ferromagnetic phase of
the model, ramping it linearly from g(0) ≈ 0 to g(τQ) = 2, where we should end up in the ground
state in the paramagnetic regime. The process hinges on arriving in the ground state. As we have
shown with a simple calculation, the TFIM admits excitations quite easily at gc = 1. Control is
crucial to ensure we end up in the ground state after the ramping protocol. As the form of the
Hamiltonian for each decoupled subspace after the Jordan-Wigner transformation has the form
of the Landau-Zener model, we can map the form of its counterdiabatic term to it. This leads
to [64] (for even N)

HCD,k = ġ sin k
2 [g2 − 2g cos k + 1]σ

y
k . (2.60)

The Jordan-Wigner transformation is highly non-local, with higher subscript cj operators re-
quiring support over many-spins, and then each k subspace in the momentum picture hav-
ing support over all cj operators. The energy gap for each momentum subspace is given by
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γk = 4ℏω
√
g(t)2 − 2g(t) cos k + 1, which vanishes in the thermodynamic limit at the critical

point. For a finite number of spins the gap between ground and first excited state remains finite,
shrinking as ∼1/N , and only the lowest subspace, k0, is critical. To determine adiabatic-impulse
crossover times we approximate this gap as γ0≈ 4ℏω |g(t)− 1| [70, 72]. The resulting crossover
times, assuming g0<1, are again found by solving for the real roots of Eq. (2.5) giving

t∓ = τQ
2 ∓

√
τQ

8ω(1− g0) , (2.61)

which agrees with the predicted KZM scaling, Eq. (2.8). Note that the impulse regime vanishes
for long quench times (t+ − t−)/τQ → 0 but does not behave correctly for short quench times
τQ < 1/(2ω[1− g0]) due to the approximation of the energy gap.

In Fig. 2.4(a) and (b) we show the fidelity with the instantaneous ground state for the three
cases of no control, full control, and impulse control for a system size of N=16, where qualitatively
similar behaviors with the LZ model are exhibited. By employing control only during the impulse
regime the most detrimental period of defect formation is suppressed and good target state fidelities
are achieved. The effectiveness of impulse control is thoroughly demonstrated by comparing
Fig. 2.4(c) and (d). Here we show the final target state fidelity as a function of system size
and quench duration. When no control is applied, i.e. κ = 0 shown in panel (c), we see that
defects rapidly form for larger systems due to the effect of the impulse regime, leading to small
final fidelities (lighter, blue region). These results are well described by the Landau-Zener formula
applied to the lowest momentum subspace F(τQ) ≈ 1 − exp

[
−2πω

|ġ| sin2 ( π
N

)]
[72]. Employing

impulse control provides a significant increase in the final state fidelities, cfr. Fig. 2.4(b). For
extremely short quench times, τQω<1, the impulse regime dominates the dynamics and therefore
the control term is effectively on for the entire protocol duration. There is then a region of low-
fidelity (blue-coloured) for 1<τQω<6 for sufficiently large system sizes. In this region the rapid
losses in fidelity during the short adiabatic regimes are too severe to be recovered. Nevertheless,
beyond this small pathological region in parameter space, impulse-only control is highly effective in
comparison to uncontrolled evolution, consistently outperforming the uncontrolled case for a range
of longer quench times. However, similar to the LZ case, once as approach adiabatic timescales
the uncontrolled case can have a slightly higher fidelity than impulse control (upper left quadrant
of Fig. 2.4(c) vs (d)). As previously noted in the LZ setting, this is due to eigenstate population
being approximately constant leaving the impulse regime, removing any possibility to recover any
lost fidelity from the initial period of free evolution.

We now focus on the energetic costs. In Fig. 2.4 we see that the absolute, panel (e), and
relative, panel (f), energetic savings are consistent with the behavior exhibited in the LZ case. We
see from Fig. 2.4(e) that the energetic savings are extensive with the size of the system, however
the relative savings exhibits a clear converging, intensive behavior. Nevertheless, a significant
saving in the energetic overheads can be achieved while still achieving effective control. Similar
to the LZ model, exact expressions for the cost measures in this case can be determined. The
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Figure 2.4: The instantaneous fidelity of TFIM for no control (blue dashed line), impulse control
(red solid line) and full control (green dotted line), for different quench times. Orange shaded
area indicates the impulse regime [t−, t+] (a) ωτQ = 10 (b) ωτQ = 25 for N = 16. Panels (c)
and (d) show the final state fidelity for TFIM versus quench time τQ and system size N for the
(c) uncontrolled case and (d) impulse control. Red indicates high final state fidelity, with blue
corresponding to low final state fidelity. Panels (e) and (f): Energetic savings versus quench time
τQ. N = 4, 8, 12, 18 (blue dashed line, red solid line, green dotted line, black dot-dashed line) and
thermodynamic limit (light gray thick solid line). (e) Savings δE (f) relative savings δE/C. In all
panels, g0 = 0 and m = 100ω−1
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norm can be written as ∥HCD∥=
∑
k>0 ∥HCD,k∥. The associated energetic cost, Eq. (2.12), is

then [42]
C = ℏ√

2τQ

∑
k>0

∫ τQ

0
ds

∣∣∣∣ ġ sin k
g(s)2 − 2g(s) cos k + 1

∣∣∣∣ . (2.62)

This can be rewritten as

C = ℏ√
2τQ

∑
k>0

{
arctan

[
g(τQ)−cos k

sin k

]
− arctan

[
g0−cos k

sin k

]}
.

(2.63)

The extensive nature of this and the absolute savings, Eq. (2.15) can be explicitly seen by noting
that in the thermodynamic limit we can make the replacement ∑k>0 → N

2π
∫ π

0 dk,

δE ≈ ℏN
2
√

2πτQ
{Φ[g(τQ)]− Φ[g(t+)] + Φ[g(t−)]− Φ[g0]} ,

(2.64)

where we have defined Φ[g] =
∫ π

0 dx arctan
[
g−cos(x)

sin(x)

]
. In this limit then, the relative cost becomes

δE/C = 1− Φ[g(t+)]− Φ[g(t−)]
Φ[g(τQ)]− Φ[g0] , (2.65)

which is clearly intensive. These expressions agree with the numerical results shown in Fig. 2.4.

While the Jordan-Wigner transformation allows for a significant computational speedup over
working with the Hamiltonian in the original spin basis, we do gain more insight into the importance
of local and few body control terms for the system, which are typically more experimentally feasible.
In the spin picture, the counterdiabatic control term has been exactly determined (again for even
N) as [64,65]

HCD = −ġ
[M−1∑
m=1

um(g)H [m]
CD + δM,N/2

1
2uN/2(g)H [N/2]

CD

]
, (2.66)

H
[m]
CD =

N∑
n=1

[
σxn

( n+m−1∏
j=n+1

σzj

)
σyn+m + σyn

( n+m−1∏
j=n+1

σzj

)
σxn+m

]
, (2.67)

um(g) = g2m + gN

8gm+1(1 + gN ) . (2.68)

Here M denotes the maximum range of the interactions, with the exact counterdiabatic term
given by M =N/2. This Hamiltonian clearly highlights the necessity for non-local terms, which
can incur high complexity and energetic costs [39].

We can truncate the control terms to restricted range(s) M . For clarity, we consider N = 6
although remark that we expect qualitatively similar behaviors to hold for larger systems. In
Fig. 2.5(a) we plot the final state fidelity for a range of quench times, employing the control terms

30



1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8
0
2
4
6
8
10
12
14

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.5: The final state fidelity for the N = 6 TFIM versus quench time for uncontrolled
evolution (dashed, blue), M = 1 (i.e. two-body control, solid red), M = 2 (three body control,
dotted green) and M = 3 (i.e. full control, dot-dashed black). In panel (a) we show the perfor-
mance when the control term is always on for the entire evolution, while panel (b) corresponds
to impulse control. Panels (c) and (d) show the energetic savings versus quench time τQ for the
same truncated-range impulse control protocol in (b), with the same colour scheme as before. (c)
Savings δE relative to employing full range, full quench cost C (d) relative savings δE/C. Other
parameters: g0 = 0.01 and m = 100ω−1

for the entire quench. In line with intuition, the fidelities arrange themselves into a hierarchy for
short quench times. The uncontrolled case performs the worst, while longer range more complex
control works increasingly well until it achieves perfect final fidelities for full control (M=3 in this
case), with the relative difference in performance reducing as we approach the adiabatic limit. For
the case of impulse control, Fig. 2.5(b), the same hierarchy holds for very fast protocols. However,
as the quench time is increased we see several crossovers in relative performance, indicating that
for such intermediate quench times, impulse control exhibits a “less is more” behavior whereby
better (although not perfect) target state fidelities can be achieved by employing a simpler control
term in the impulse regime and significant energetic savings can be achieved, cfr. Fig. 2.5(c) and
(d).
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2.6 Conclusion

We have demonstrated that high fidelity coherent control can be achieved at a lower resource
overhead by restricting the application of control techniques to when they are strictly necessary.
By exploiting the framework provided by the Kibble-Zurek mechanism, which divides the dynamical
response of a system driven through a critical point into adiabatic and impulse regimes, we have
shown that high target state fidelities can be achieved by only implementing control during the
impulse regime. The intuition for this effect relies on the underlying physical principles of the KZM;
the adiabatic regime is characterised by a dynamics which is varying sufficiently slow, compared
to the energy gap, such that the system is still able to relax. Under these conditions, even
though the system may transiently generate some excitations, the system recovers - a remarkably
generic feature of adiabatic protocols [60]. In contrast, we have shown that control is essential
in the impulse regime. Due to the typically high energetic cost associated with various control
protocols [41,43], we have shown that significant energetic savings can be achieved using impulse
control without significantly sacrificing efficacy.
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Chapter 3

Robustness of Controlled Unitary
Gates

The idea of using quantum properties of matter and light to process information has given rise to
an extensive research effort. Beyond the implications for basic science, quantum information tech-
nologies would entail a significant computational speed-up for particular applications [22, 23, 73]
compared to classical algorithms. These quantum advantages have been theoretically predicted
for a variety information processing tasks, such as search and factoring algorithms, quantum cryp-
tography, and Hamiltonian simulation. Experimentally it is now possible to implement them in
systems such as superconducting qubits [74, 75], trapped ions [76], and photons [77]. Several
approaches for universal quantum computation have been developed, chief among them being
measurement-based [78–81], gate-based [82], and adiabatic models [83, 84]. The relative bene-
fits and drawbacks of each approach notwithstanding [22, 73], gate-based quantum computation
presents an attractive method. Any computation can be implemented by a relativity small set of
gates on a qubit register [82, 85]. Indeed, small scale quantum devices provide remarkable plat-
forms for simulation of quantum systems [86–88], insights from which can be greatly enhanced
by improving the implementation of the basic building blocks for the gate-based approach for
universal quantum computing, i.e. the quantum gates themselves.

Achieving this aim necessitates coherent control of quantum systems [1, 5, 25, 26, 89–91].
Beyond the basic requirement of enacting the desired gate operation, we must consider several
additional factors to ensure the scalability and reliability of these operations. Among these are
the resources necessary for their fast and accurate implementation [6,92–104], understanding the
spoiling impact of the environment [105–107], and the impact of operational errors [108, 109].
The assessment of the energetic efficiency of these devices is crucial in their design [6] and may
enforce practical constraints for their implementation. The interplay between the performance of
a quantum computing machine and its energetic efficiency determines a fundamental connection
between quantum information processing and thermodynamics [110,111].

Following this edict, in this chapter we consider three approaches to implement gate operations
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Figure 3.1: (a) Shows the auxiliary control setting based on the protocol from Ref. [113]. Here
an auxiliary qubit is coupled to the computational register, with control fields acting only on this
auxiliary system. We assume the driven qubit can also experience environmental effects while the
computational qubit is completely isolated. (b) Shows the setup for the Inverse Engineering setting.
The Hamiltonian is designed without any additional resources, and therefore the computational
qubit is driven directly and can be subject to environmental noise.

on quantum systems through controlled Hamiltonian dynamics. In particular, we consider the aux-
iliary evolution approach introduced in Refs. [112,113], where a driven auxiliary system is coupled
to the computational register upon which the operation is faithfully induced provided the evolution
is adiabatic. We augment this approach with techniques from shortcuts-to-adiabaticity [25, 26],
specifically counterdiabatic driving (CD) [17,33,66,114] and Floquet engineering (FE) [115], that
allow to arbitrarily speed up the implementation, albeit with an increased energetic cost. In
addition to these techniques, we consider an inverse engineering (IE) approach [116] where the
computational register is directly driven by external control fields. We examine these approaches,
both in terms of their resource overhead and their resilience to systematic errors stemming from
imperfect timekeeping and environmental effects. Section 2.1 outlines the control techniques used
in this work. Section 2.2 introduces the benchmarks for the robustness of a gate implementation.
The remainder of the chapter constitutes the original work found in [3] which was done in collab-
oration with Barış Čakmak and Steve Campbell. The numerical and analytical results below were
provided by myself.

3.1 Controlled Gate Techniques

Here we outline the three control techniques that are the focus of the present Chapter. As
shown in Fig. 3.1 for the auxiliary evolution approach we consider two approaches to speed up the
dynamics (i) counterdiabatic driving (CD) and (ii) Floquet Engineering (FE); we also consider a
third controlled implementation where the computational register is directly driven via (iii) inverse
engineering (IE).
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3.1.1 Auxiliary Evolution

The first method we consider for implementing unitary gates is the adiabatic approach [112] where
an auxiliary qubit is coupled to a computational register upon which we wish to perform the gate
operation. By driving this auxiliary qubit adiabatically, the desired gate operation can be effected
on the computational register. Let us first show the auxiliary evolution procedure for an arbitrary
single-qubit gate. This unitary will generically have an eigenvalue λ+ = 1, and we denote the
corresponding eigenvector as |n+⟩. This is the vector that remains invariant under the action
of the unitary - the rotation axis. We denote the other eigenvalue as λ− and its corresponding
eigenvector as |n−⟩. The action of a single-qubit gate on an arbitrary state in the eigenbasis of
the unitary is then

α |n+⟩+ β |n−⟩ → α |n+⟩+ eiϕβ |n−⟩ , (3.1)

where eiϕ = λ−. As an example, we consider the Hadamard gate. Its matrix representation in the
computational basis is

H = 1√
2

(
1 1
1 −1

)
. (3.2)

The “rotation axis,” or the unit vector that is left invariant by the action of the unitary, corresponds
to the eigenvector with eigenvalue +1. For the Hadamard gate this is

|n+⟩ = 1√
1 + (1 +

√
2)2

(
1 +
√

2
1

)
. (3.3)

The second eigenvalue is -1, with corresponding eigenvector

|n−⟩ = 1√
1 + (1−

√
2)2

(
1−
√

2
1

)
. (3.4)

The action of the Hadamard gate on a general state is

H(p1 |0⟩+ p2 |1⟩) = p1 + p2
2 |0⟩+ p1 − p2

2 |1⟩ . (3.5)

In the eigenbasis of the Hadamard gate (3.1), the amplitudes are

p1 =

√
2 +
√

2
2 α−

√
2−
√

2
2 β, (3.6)

p2 =

√
2−
√

2
2 α+

√
2 +
√

2
2 β. (3.7)
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Recognising that the action of H on the state in the eigenbasis is the transformation β → −β,
we denote the amplitudes after the unitary transformation as

p′
1 =

√
2 +
√

2
2 α+

√
2−
√

2
2 β, (3.8)

p′
2 =

√
2−
√

2
2 α−

√
2 +
√

2
2 β. (3.9)

A quick calculation then shows that p′
1 = (p1 + p2)/2 and p′

2 = (p1 − p2)/2, reinforcing the idea
that we simply need to “tack-on” a local phase derived from λ− onto |n−⟩ to perform our gate.
To realise an arbitrary single-qubit gate in the auxiliary evolution framework, we first couple the
computational qubit to an auxiliary qubit that is initialised in the |0⟩ computational state. It is this
qubit that is subject to the controlled drive. The combined initial state in the register-auxiliary
Hilbert space is then

|Ψi⟩ = (α |n+⟩+ β |n−⟩)⊗ |0⟩ . (3.10)

We consider the total Hamiltonian

H(t)= |n+⟩ ⟨n+| ⊗H0(t) + |n−⟩ ⟨n−| ⊗Hϕ(t), (3.11)

where the projectors are given by |n±⟩ ⟨n±| = (1± n · σ) /2, with n being the Bloch vector
representation of |n+⟩ and Hϕ(t) given as

Hϕ(t) = − [cos(θfλ)σz + sin(θfλ) [cos (ϕk)σx + sin (ϕk)σy]] . (3.12)

For the Hadamard gate we have ϕ = π, derived from eiϕ = λ−. Adiabatically evolving under the
Hamiltonian above yields time evolved state

|Ψ(t)⟩ = α |n+⟩ ⊗ |ϵg0(t)⟩+ β |n−⟩ ⊗
∣∣∣ϵgϕ(t)

〉
, (3.13)

where
∣∣∣ϵgϕ(t)

〉
is the ground state of Eq. (3.12), given by

∣∣∣ϵgϕ(t)
〉

= cos
(
θfλ(t)

2

)
|0⟩+ eiϕ sin

(
θfλ(t)

2

)
|1⟩ . (3.14)

The overall state then reads

|Ψ(t)⟩ = cos
(θfλ

2
)
(α |n+⟩+ β |n−⟩)⊗ |0⟩+ sin

(θfλ
2
)
(α |n+⟩+ eiϕβ |n−⟩)⊗ |1⟩ . (3.15)

We see that the gate has been performed on the computational qubit with amplitude sin2 (θλ/2). If
we measured the auxiliary qubit as |1⟩ we would know the unitary has been performed successfully,
while if we measured |0⟩ we could infer that the computational qubit is in its original state. We
can design a ramping protocol to deterministically perform the gate. Denoting the total drive time
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as τ , we then choose θλ(τ)=π as the endpoint of the drive. The state at this time is

|Ψ(τ)⟩ = (α |n+⟩+ eiϕβ |n−⟩)⊗ |1⟩ . (3.16)

Provided we drive the auxiliary qubit adiabatically with the parameters chosen above, we find that
the desired unitary rotation has been performed on the computational qubit, and the auxiliary
qubit is in the excited state of the computational eigenbasis. This framework was first introduced
in [112], and we can expand upon it to show that one can also perform a desired rotation on
the computational qubit with the auxiliary qubit starting in its excited state. That is to say, we
initialise the overall system in the state

|Ψi⟩ = (α |n+⟩+ β |n−⟩)⊗ |1⟩ . (3.17)

Evolving adiabatically with the same Hamiltonians as before gives the time-evolved state

|Ψ(t)⟩ = α |n+⟩ ⊗ |ϵe0⟩+ β |n−⟩ ⊗
∣∣∣ϵeϕ−

〉
, (3.18)

where the excited state of the time dependent Hamiltonian is
∣∣∣ϵeϕ〉 = −e−iϕ sin

(
θfλ

2

)
|0⟩+ cos

(
θfλ

2

)
|1⟩ . (3.19)

The total time-evolved state then reads

|Ψ(t)⟩ = − sin
(θfλ

2
)
(α |n+⟩+ e−iϕβ |n−⟩)⊗ |0⟩+ cos

(θfλ
2
)
(α |n+⟩+ β |n−⟩)⊗ |1⟩ , (3.20)

which, for θfλ(τ) = π deterministically performs the gate, with a global phase, provided that
one chooses −ϕ instead of +ϕ for the driving parameter in (3.12). To that end, we consider the
general total Hamiltonian (for the register and auxiliary qubit)

H(t) =
∑
k

Pk ⊗Hϕk
(t), (3.21)

where Pk are projectors onto each of the eigenvectors of the desired unitary acting on the com-
putational register, while Hϕk

(t) is the eigenvalue-dependent driving Hamiltonian given by (3.12)
acting on the auxiliary qubit. We will briefly show how to utilise this for a two-qubit gate. One
typical example is the controlled-phase gate. A phase shift operation for an angle ϕ applied to a
qubit acts as |0⟩ → |0⟩ and |1⟩ → eiϕ |1⟩. The controlled-phase gate implements this operation
on the target qubit, provided the control qubit is in the |1⟩ state. The matrix representation of
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the unitary in the computational basis is

CP(ϕ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

 . (3.22)

Explicitly, a two-qubit state in the computational basis is

|ψ⟩ = α |0, 0⟩+ β |0, 1⟩+ γ |1, 0⟩+ δ |1, 1⟩ . (3.23)

Performing the controlled-phase gate yields the following output state

CP(ϕ) = α |0, 0⟩+ β |0, 1⟩+ γ |1, 0⟩+ eiϕδ |1, 1⟩ . (3.24)

The unitary is already diagonal in the computational basis, meaning that the projectors onto its
eigenvectors are simply the computational basis projectors. We simply need to generate a local
phase of eiϕ to the |1, 1⟩ component of the state. Within the auxiliary evolution framework, the
gate operation can again be implemented by performing a drive on the additional auxiliary qubit.

HAE
CP (t) = (|0, 0⟩⟨0, 0|+ |0, 1⟩⟨0, 1|+ |1, 0⟩⟨1, 0|)⊗H0(t) + |1, 1⟩⟨1, 1| ⊗Hϕ(t), (3.25)

where the time-dependent driving Hamiltonians H0(t) and Hψ(t) applied on the auxiliary qubit
are given as in Eq. (3.12). As before, we initialise the total state as

|Ψ(0)⟩ = (α |0, 0⟩+ β |0, 1⟩+ γ |1, 0⟩+ δ |1, 1⟩)⊗ |0⟩ . (3.26)

Evolving it adiabatically gives

|Ψ(t)⟩ = cos θλ2 (α |0, 0⟩+ β |0, 1⟩+ γ |1, 0⟩+ δ |1, 1⟩)⊗ |0⟩ (3.27)

+ sin θλ2 (α |0, 0⟩+ β |0, 1⟩+ γ |1, 0⟩+ eiϕδ |1, 1⟩)⊗ |1⟩ . (3.28)

Again, we can choose a ramping protocol such that θλ(τ) = π, deterministically performing
the gate by time τ . A similar argument as for the single-qubit case can be made for working in
the excited state of the auxiliary qubit, again allowing one to recycle the auxiliary qubit for the
next step in a circuit without resetting its state.

In order for the auxiliary evolution framework to implement high fidelity processes we need to
minimise diabatic transitions. As discussed in Chapter 1, driving this system at finite timescales
will result in these transitions. To reduce these transitions, we will employ two different control
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methods for the auxiliary qubit. We again turn to counterdiabatic driving [17,33], which allows us
to arbitrarily speed up the evolution while still achieving perfect adiabatic dynamics by introducing
additional term(s) to the system Hamiltonian. The CD term for Hamiltonian (3.12) can be found
analytically, and is given by

HCD
ϕ (t) = λ̇

π

2 [σy cos(ϕ)− σx sin(ϕ)], (3.29)

where we have taken θ= π. This form of counterdiabatic term looks natural for qubits that are
manipulated by lasers such as trapped ions or neutral atoms. The above Hamiltonian could be
implemented by adding a relative phase shift to the driving field of the laser. Note that the CD
term is used in addition to the bare time dependent Hamiltonian in (3.11).

Our second control scheme, Floquet engineering, relies on an expansion of the adiabatic gauge
potential (AGP), which we shall make clear below. We consider a general Hamiltonian H0(λ)
where again λ = λ(t) is the tuneable control term. The instantaneous eigenvalues and eigenstates
are given by

H0(λ) |n(λ)⟩ = En(λ) |n(λ)⟩ . (3.30)

Consider the evolution of an arbitrary (potentially non-adiabatic) state |ψ⟩ evolving with the
unitary operator generated by H0(λ). We can transform to the co-moving basis of this evolution
with the Hermitian conjugate of the same unitary,

∣∣∣ψ̃〉 = U †(λ) |ψ⟩. In the co-moving basis, the
equation of motion reads

i∂t
∣∣∣ψ̃〉 = (U †H0(λ)U − iλ̇U †∂λU)

∣∣∣ψ̃〉 . (3.31)

The transformed Hamiltonian H̃(λ) = U †H0(λ)U =
∑
n=1En(λ) |n(λ)⟩⟨n(λ)| is diagonal in the

eigenbasis of H throughout the evolution, while the second term is responsible for transitions
between the eigenstates. We can recast this last equation to look like a connection

i∂t
∣∣∣ψ̃〉 = (H̃(λ)− λ̇Ãλ)

∣∣∣ψ̃〉 , (3.32)

where Ãλ is the adiabatic gauge potential in the co-moving frame. Transforming this term back to
the lab frame and adding it to the original Hamiltonian will then leave us with a new Hamiltonian
that will naturally be diagonal in the co-moving frame, giving us transitionless driving. This reads
as

H(t) = H0 + λ̇Aλ (3.33)

where Aλ = UÃλU † = i(∂λU)U †. We can rewrite the adiabatic gauge potential by taking the
derivative of H̃(λ) [117]

i∂λH0(λ)− i
∑
n=1

∂λEn(λ) |n(λ)⟩⟨n(λ)| = [Aλ, H0(λ)]. (3.34)

The second term on the left-hand-side still relies on us knowing the spectrum of the Hamiltonian,
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so ideally we want to remove it. It naturally commutes with H0, allowing us to rewrite the equation
as a gauge condition

[i∂λH0(λ)− [Aλ, H0(λ)], H0(λ)] = 0. (3.35)

This equation allows one to find the gauge potential through a minimisation scheme. It is equiv-
alent to minimising the Hilbert-Schmidt norm of

Gλ = ∂λH0 + i[Agλ, H0], (3.36)

where Agλ is a guess for the AGP [89]. Knowledge of the exact Lie algebra elements needed for
this control term is difficult to obtain in many-body systems, and many of those terms which
are needed for the full control term may be impractical in physical realisations. To resolve this,
recent work has proposed an ansatz for Agλ which can then be used to minimise (3.36) through a
variational scheme [115]. They propose an approximation to the exact adiabatic gauge potential
as a nested commutator expansion

A(l)
λ = i

l∑
k=1

αk [H0[H0, ...[H0︸ ︷︷ ︸
2k−1

, ∂λH0]]], (3.37)

where l denotes the order of the expansion and, for an arbitrary system in the limit of l→∞, one
obtains the exact expression for the adiabatic gauge potential, given by the Hellmann-Feynman
theorem as

⟨m(λ)| Aλ |n(λ)⟩ = −i⟨m(λ)| ∂λH0 |n(λ)⟩
Em(λ)− En(λ) . (3.38)

The coefficients for the expansion, αk, are determined by minimising the action

Sl = Tr[G2
l ], Gl = ∂λH0 + i[A(l)

λ , H0]. (3.39)

This approach is particularly effective when dealing with many-body systems as it allows to truncate
the complexity and spatial support of the control fields [115]. We can control up to order l of the
approximation by evolving with the overall Hamiltonian

H = H0 + iλ̇
l∑

k=1
αk [H0[H0, ...[H0︸ ︷︷ ︸

2k−1

, ∂λH0]]] (3.40)

For a single two-level system, as will be the focus of the present work, we find that Eq. (3.37) is
already identical to the full counterdiabatic term for l= 1, i.e. only the first term in the sum is
required to achieve perfect control. However, our main interest in employing Eq. (3.37) is because
it provides a means to engineer a Floquet Hamiltonian which approximately mimics the action
of adiabatic gauge potential [115] and therefore opens up new possibilities in terms of feasible
experimental implementations [118].

Floquet theory allows to design an effective Hamiltonian that stroboscopically mimics the
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dynamics of another, potentially more complex or experimentally unfeasible Hamiltonian. In order
to achieve this, we need only to oscillate the original driven Hamiltonian and its derivative with
respect to the driving parameter. Such a Floquet Hamiltonian can stroboscopically recreate the
dynamics of the full CD Hamiltonian H=H0 + λ̇Aλ with a comparatively reduced operator set.
Formally, Floquet engineering recreates the evolution of a reference Floquet Hamiltonian, HF ,
matching it at each end of a driving cycle

HF (t) = 1
T

∫ t+T

t
dt′HFE(t′). (3.41)

The periodically-driven Floquet-engineering Hamiltonian reads as

HFE =
[
1 + ω

ω0
cos(ωt)

]
H0(λ) + λ̇

[ ∞∑
k=1

βk sin((2k − 1)ωt)
]
∂λH0(λ), (3.42)

where βk are Fourier coefficients of the expansion of the reference Floquet Hamiltonian that we
will fix shortly, ω0 = 2π/τ is a reference frequency derived from the total time of the drive, and
ω = 2π/T , where T is the period of a single drive period. The idea is to choose the correct
Fourier coefficients for HF such that HFE stroboscopically implements the dynamics of (3.33).
The advantage gained is that if this scheme is successful, we can implement the control term
derived from the AGP (or an approximation of it) using only the Lie algebra elements that appear
in its original Hamiltonian. By periodically driving the original Hamiltonian and its derivative,
we will approximate the controlled dynamics, exactly recovering them in the ω → 0 limit. We
demonstrate how to tailor HF (t) to match the controlled Hamiltonian given by (3.40). We first
transform (3.42) by moving to the rotating frame of (ω/ω0) cos (ωt)H0.

H̃FE = ei
∫ t

0 dt
′ ω cos (ωt′)

ω0
H0HFEe−i

∫ t

0 dt
′ ω cos (ωt′)

ω0
H0 . (3.43)

We assume that the driving period is much faster than the rate of change of H0 such that we can
assume it is constant for the duration of the integral. This gives

H̃FE = ei
sin (ωt)

ω0
H0HFEe−i sin (ωt)

ω0
H0 . (3.44)

From (3.44) it is clear that the rotating frame and the lab frame coincide at t = 0 and t = T , the
start and end of each driving cycle. We will use this to fix the form of HF . The dominant term
in the Magnus series expansion [119] of (3.41) in the rotating frame is

H̃F
(0) = 1

T

∫ T

0
dtei

sin (ωt)
ω0

H0HFEe−i sin (ωt)
ω0

H0 . (3.45)

We are interested in the off-diagonal elements, as the diagonal terms will just be those of H0 as
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they are assumed constant over a single cycle

⟨m| H̃F
(0) |n⟩ = 1

T

∫ T

0
dtei

(Em−En) sin (ωt)
ω0 λ̇

[ ∞∑
k=1

βk sin((2k − 1)ωt)
]
⟨m| ∂λH0 |n⟩ . (3.46)

We can use the Jacobi-Anger expansion on the exponential

eiz sin θ ≡
∞∑

j=−∞
Jj(z)eijθ, (3.47)

where Jj(z) are Bessel functions of the first kind. This lets us re-write (3.46) as

⟨m| H̃F
(0) |n⟩ = λ̇

T

∞∑
j=−∞

Jj
(ωmn
ω0

)
⟨m| ∂λH0 |n⟩

∫ T

0
dt

[ ∞∑
k=1

βk sin((2k − 1)ωt)
]

eiωjt, (3.48)

where ωmn = Em − En, and we have again used the separation of timescales for H0 and the
period of a drive. The integral returns the Fourier coefficients βk, giving us

⟨m| H̃F
(0) |n⟩ = iλ̇

∞∑
j=1

βjJ2j−1
(ωmn
ω0

)
⟨m| ∂λH0 |n⟩ . (3.49)

As established before, the rotating frame and lab frames coincide at t = 0 and t = τ , which lets
us write (including the diagonal terms now)

HF
(0) = H0 + iλ̇

∞∑
j=1

βjJ2j−1
(ωmn
ω0

)
⟨m| ∂λH0 |n⟩ . (3.50)

We can Taylor expand the second term around t = 0

HF
(0) = H0 + iλ̇

∞∑
j=1

βj

∞∑
k=0

(−1)k(2ω0)−2(j+k)+1

k!(k + 2j − 1)! [H0[H0, ...[H0︸ ︷︷ ︸
2j+2k−1

, ∂λH0]]]. (3.51)

As we will see, we return the full counterdiabatic term for the single-qubit drive with a single
commutation, this implies we need only the j = 1, k = 0 term in the expansion. In principle, one
need only compare terms between (3.40) and (3.51) to fix the Fourier coefficients for the Floquet
engineered Hamiltonian given by (3.42). For us, this implies β1 = 2α1ω0. Let us apply this control
scheme to the auxiliary drive Hamiltonian

Hϕ(λ) = − [cos(πλ)σz + sin(πλ) [cos (ϕ)σx + sin (ϕ)σy]] . (3.52)

The first order, l = 1 term gives

A(1)
λ = iα1[Hϕ, ∂λHϕ] = −2πα1(cosϕσy − sinϕσx). (3.53)
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From a term, we have already found the operator form of the counterdiabatic field, given by
(3.29). Minimisation of the action given by (3.39) fixes α1 = −1/4, which gives us precisely the
counterdiabataic term at l = 1 order. Even though this is for a single qubit, the control term has
support on an operator that has no overlap with the operator set of the bare Hamiltonian. If we
only had access to the operator set of the bare Hamiltonian, this is where the Floquet engineering
control term has an advantage. It reads

ĤFE
ϕ =

[
1 + ω

ω0
cos(ωt)

]
Ĥϕ(λ) + λ̇ [ω0α1 sin(2ωt)] ∂λĤϕ(λ), (3.54)

where ω0 = 2π/τ is the reference frequency tied to the total gate time and ω = Nω0 with
N ∈N≫ 1 is the frequency for a single periodic drive cycle. The Floquet Hamiltonian replaces
the time dependent bare Hamiltonians in (3.11).

3.1.2 Inverse Engineering

As an alternative approach to auxiliary control, we consider a simpler approach by directly driving
the computational register. The evolution of a closed quantum system obeys the time-dependent
Schrödinger equation and an arbitrary initial state is connected to a designated final state by
a unitary operator, |ψ(t)⟩ = U(t) |ψ(0)⟩. The Hamiltonian that generates such a unitary time
evolution is determined by

H(t) = iU̇(t)U †(t). (3.55)

It is possible to follow several approaches to inverse engineer the desired unitary [26,116,120,121],
and hence the corresponding Hamiltonian. In this work, we adopt the approach taken in Ref. [116]
and express U(t) in the following form

U(t) =
∑
n

eiπλn(t) |n(t)⟩ ⟨n(t)| , (3.56)

where the set {|n(t)⟩} forms a complete orthonormal basis, and λ(t) has the initial condition
λn(0) = 2l where l ∈ Z to ensure U(0) = I. By taking suitable choices for the free parameters
that define the orthonormal basis and local phase information, we can construct a Hamiltonian that
implements the desired unitary behaviour in such a way that is not dependent on a particular initial
state. In what follows we construct the IE Hamiltonian such that λ(t) is the driving parameter.
The motivation for choosing IE is to showcase another control technique. However, as we noted
in Chapter 1, the IE approach prescribed above and “typical” counterdiabatic control methods
are intrinsically related [122,123]. We inverse-engineer a protocol such that there are no diabatic
transitions are allowed, it is diagonal in its co-moving frame. Therefore, the results reported for
the IE case would be qualitatively similar if instead CD driving were applied to the computational
qubit directly. What does differ is that with the IE approach we do not start with a reference
Hamiltonian a priori for which the transitions need to be suppressed. Nevertheless, as depicted in
Fig. 3.1, the key difference in our analysis is embodied by the two distinct settings where either
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an auxiliary system is employed to achieve the gate or when the computational system is directly
driven.

Let us first consider a single-qubit process. We consider the unitary operator

U1(t) = |m+(t)⟩ ⟨m+(t)|+ eiπλ(t) |m−(t)⟩ ⟨m−(t)| , (3.57)

where the basis states are defined as

|m+(t)⟩ = cos[ϑ(t)/2] |0⟩+ eiφ(t) sin[ϑ(t)/2] |1⟩ ,

|m−(t)⟩ = eiφ(t) cos[ϑ(t)/2] |1⟩ − sin[ϑ(t)/2] |0⟩ .
(3.58)

with parameters ϑ(t), φ(t), and λ(t) that can be tuned in order to define the desired gate operation.
For a single qubit gate, the driving Hamiltonian found from Eq. (3.55) takes the form [116]

H(t) = 1
2ω(t) · σ, (3.59)

where the vector components are given as

ωx(t) =(cosπλ− 1)φ̇ cosφ cosϑ sinϑ

+ [φ̇ sinϑ sin πλ+ (cosπλ− 1)ϑ̇] sinφ

+ (ϑ̇ cosϑ sin πλ+ πλ̇ sinϑ) cosφ,

ωy(t) =(cosπλ− 1)φ̇ sinφ sinϑ cosϑ

+ [φ̇ sinϑ sin πλ− (cosπλ− 1)ϑ̇] cosφ

+ (ϑ̇ cosϑ sin πλ+ πλ̇ sinϑ) sinφ,

ωz(t) = −ϑ̇ sinϑ sin πλ− (cosπλ− 1)φ̇ sin2 ϑ+ πλ̇ cosϑ. (3.60)

The action of this Hamiltonian is to transform the input state |µ(0)⟩= a |0⟩ + b |1⟩ to the final
state |µ(t)⟩=α(t) |0⟩+ β(t) |1⟩ where the populations are

α(t) = a(eiπλ(t) + 1)− (eiπλ(t) − 1)(a cosϑ(t) + be−iφ(t) sinϑ(t))
2 ,

β(t) = b(eiπλ(t) + 1) + (eiπλ(t) − 1)(b cosϑ(t)− ae−iφ(t) sinϑ(t))
2 .

One choice of parameters that gives the Hadamard gate are φ(t)=0, ϑ(t)=π/4, and ramping from
λ(0)=0 to λ(τ)=1, which in turn gives the populations of the final state as α(τ)=(a+ b)/

√
2,

and β(τ)=(a− b)/
√

2. The corresponding Hamiltonian that drives our qubit is then given as

HIE
Had(t) = πλ̇(t)

2
√

2
(σx + σz). (3.61)
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The same approach can be extended to a two-qubit process

U2(t) =
∑
k=1,2

|mk,+(t)⟩⟨mk,+(t)|+ eiπλk(t) |mk,−(t)⟩⟨mk,−(t)| . (3.62)

The evolution basis is similarly defined

|mk,+(t)⟩ = cos[ϑ(t)/2] |k − 1, 0⟩+ eiφk(t) sin[ϑ(t)/2] |k − 1, 1⟩ , (3.63)

|mk,−(t)⟩ = eiφk(t) cos[ϑ(t)/2] |k − 1, 1⟩ − sin[ϑ(t)/2] |k − 1, 0⟩ . (3.64)

We now have six parameters, with the restriction that λk(0) = 0. All appear in the final state
of the system under the action of the unitary. Through a suitable choice of the parameters we
can design the Hamiltonian to implement the desired unitary dynamics. For example, adopting
the general formalism above, we obtain the desired IE Hamiltonian that applies the controlled-Z
operation as follows [116]

HIE
Cπ(t) = πλ̇(t)

4 (1⊗ σz + σz ⊗ 1− σz ⊗ σz). (3.65)

Note that the implementation of the above Hamiltonian requires a pure-dephasing interaction
between the target and control qubits.
In this section we have established two general ways of performing unitary processes on qubits
- one that involves driving auxiliary qubits that are coupled to the register, and a second that
requires us to drive the register directly. The latter is chosen such that it does not allow for
diabatic transitions, and therefore can be performed arbitrarily fast. The former requires a more
careful treatment - additional control terms must be included to drive it similarly quickly. We will
explore both conventional counterdiabatic control and Floquet engineering for this task.

3.2 Figures of merit

To characterise how faithfully a gate has been implemented we need to adopt a fidelity measure that
is agnostic to the initial state of the register. Typically one can use full-process tomography [124]
to establish this, but this can be done with a more restricted set of state. Instead we adopt the
average fidelity-loss measure [106]

JT = 1−
3∑
i=1

wi
tr[ρ2

i (0)]
Re
{
tr[Uρi(0)U †ρi(τ)]

}
, (3.66)

and consider the average of the Hilbert-Schmidt norm of the ideal evolution of three specific initial
states with the obtained state, weighted by wi with ∑3

i=1wi = 1. Three initial states satisfying
particular conditions have been shown to be the minimum amount needed to address all the possible
errors and characterise a general unitary operation for an open system evolution [106,125]. For a
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single qubit, the following set satisfies the necessary conditions [106]

ρ1(0) =
(

2/3 0
0 1/3

)
, ρ2(0) =

(
1/2 1/2
1/2 1/2

)
, ρ3(0) =

(
1/2 0
0 1/2

)
.

The first state, ρ1, checks errors in the fixed basis states, and therefore does not signal any
possible errors that are diagonal in this basis. The second state, ρ2, addresses this and indicates
the off-diagonal errors in the fixed basis. The first two states alone are enough to distinguish two
unitaries in the closed case. The third state, ρ3, is chosen to ensure that populations are conserved,
important for an open system setting. Depending on the choice of the weights in Eq. (3.66), it is
possible to highlight the effect of a source of an error on the infidelity over the others, which could
be numerically advantageous if one were tailoring parameters for an optimal control approach via
machine learning [106]. For simplicity and without loss of generality, throughout this chapter we
choose these weights to be equal, i.e. wi=1/3.

As we discussed in 2, the addition of control terms to the Hamiltonian implies an overall
increase in resources needed to evolve the system. We will again adopt the cost measure introduced
in [34,66,126]

C = 1
τ

∫ τ

0
∥H∥dt, (3.67)

where ∥·∥ denotes the norm of the Hamiltonian of interest, and again for simplicity we consider
the trace norm. It is important to emphasise that, following the approach taken in [98], we take H
to be the full Hamiltonian that generates the driven dynamics implementing the gate operation,
not just the external control term. In fact, notice that it is only for the case of CD control where
an explicit additional Hamiltonian term is added to the bare Hamiltonian. For both the FE and
IE approaches, control is embedded into the same operators that appear in the bare Hamiltonian.
Therefore, it is necessary to consider the cost of the full Hamiltonian generating the time evolution.
This measure is well motivated by the functional form of the physical driving fields [34, 127] and
it has been shown to have connections to a Landauer-type limit for the change in information
encoded computational states [94].

The controlled dynamics require that the drives are implemented for a specific length of time,
which we denote by τ . Since the control protocols are designed to be effective regardless of the
specific functional form of the drive, this provides a useful additional degree of freedom for control
protocols [53, 98]. We consider the following ramp profiles that satisfy the boundary conditions
λ(0)=0 and λ(τ)=1,

λ(t) = t

τ
, linear

λ(t) = 10t3

τ3 −
15t4

τ4 + 6t5

τ5 , polynomial

λ(t) = sin
(
πt

2τ

)
. sinusoidal

(3.68)
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We look to characterise the impact of timing errors in the drive, i.e. where the duration of the
driving field over- or under-shoots the intended target time, τ , by assessing the resulting impact on
the gate fidelity, Eq. (3.66). We note that these pulses are chosen to capture and compare certain
pulse characteristics. Indeed much work has been done in designing more complex ramp profiles
via optimal control and machine learning methods [128–130] seeking to optimise to a variety of
relevant cost functionals. Our analysis can therefore provide useful information for the seed pulses
to ensure robustness to, e.g. time keeping errors, while exploiting more advance techniques to
explore a greater optimization landscape.

We will be interested in considering how faithfully the gate operation is implemented when the
controlled system is not completely isolated and therefore prone to environmental effects. To that
end, we model the time evolution of the driven system with the GKSL master equation, which
was introduced in Chapter 1, restated here as

dρ

dt
= Lρ = −i[H, ρ] +

N2−1∑
i

γi

(
LiρL

†
i −

1
2
{
L†
jLi, ρ

})
. (3.69)

We will consider just a single jump operator that acts on the driven qubit, σλz , with a single
interaction strength, γ. The superscript λ implies our assumption that the environment only
affects the driven part of the system, i.e. for the CD and FE cases we assume the environment
acts only on the auxiliary qubit, while for IE it is applied directly to the computational qubit(s).
This gives

Lρ = −i[H, ρ] + γ
(
σλz ρσ

λ
z − ρ

)
, (3.70)

The effect of the jump operator on the computational basis states is

σz |0⟩ = |0⟩ , σz |1⟩ = − |1⟩ . (3.71)

This implies that it flips the sign of the off-diagonal terms in the density matrix, ρ, of the system

σzρσz =
(

1 0
0 −1

)(
ρ00 ρ01

ρ∗
01 ρ11

)(
1 0
0 −1

)
=
(
ρ00 −ρ01

−ρ∗
01 ρ11

)
. (3.72)

This then gives

Lρ = −i[H, ρ] + γ

(
0 −2ρ01

−2ρ∗
01 0

)
. (3.73)

We can solve the first-order differential equations that governs the off-diagonal terms, i.e. the
coherence of the qubit.

ρ01(t) = ρ01(0)e−2γt. (3.74)

The populations are unaffected by the environment, which will evolve according to the unitary part
of the GKSL equation, while the coherence terms decay exponentially. This form of decoherence
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is typically called pure dephasing. For our purposes it is a simple but accurate description of what
occurs in many physical qubits, where energy relaxation is slow compared to the rate of dephasing.
The self-Hamiltonian of computational qubits are typically proportional to σz. Fluctuations in this
term, or noise that manifests as an operator that commutes with the system Hamiltonian will
therefore manifest as pure dephasing. We will explore how decoherence effects the performance
of the gates for the two physically distinct approaches to their implementation.

3.3 Hadamard Gate

We compare the approaches using the Hadamard gate as a benchmark. In the IE case the
Hamiltonian is

HIE
Had(t) = πλ̇(t)

2
√

2
(σx + σz). (3.75)

while in the auxiliary evolution framework it reads

HAE
Had(t)= |n+⟩ ⟨n+| ⊗H0(t) + |n−⟩ ⟨n−| ⊗Hπ(t), (3.76)

where the projectors are given by |n±⟩ ⟨n±| = (1± n · σ) /2, with n = 1/
√

2{1, 0, 1} and Hϕ(t)
given as

Hϕ(t) = − [cos(πλ)σz + sin(πλ) [cos (ϕ)σx + sin (ϕ)σy]] . (3.77)

This last equation will use both counterdiabatic control as given in (3.29) and Floquet engineering
as given by (3.54).

Fig. 3.2 shows the trajectories for the various control approaches on the Bloch sphere in the
absence of any errors. While the IE qubit (rightmost, yellow) follows a path on the Bloch sphere
and therefore remains pure during the gate operation, the auxiliary evolutions’ computational qubit
cuts through the Bloch sphere (straight, green line) connecting the initial state (|+⟩) to the final
one (|0⟩). The latter observation shows that, although the initial and final states of both the
control and register qubits are pure in the auxiliary evolution approach, during the dynamics they
are mixed, which indicates that they become entangled during the process. By having a detailed
look at the Bloch vectors of the driven qubits for the auxiliary evolution and IE, it is possible to
see that their x and z-components are equal to each other at all times, and only y-components
differ (in fact, this component remains identically zero for the auxiliary evolution’s qubit for this
particular gate operation). Therefore, the path that this computational qubit takes is restricted to
the x− z plane and the projection of the path of the IE qubit to the same plane is identical and
therefore, as we demonstrate explicitly below, the performance in terms of the implementation
(in)fidelity, Eq. (3.66) are identical for the different processes despite their dynamics being distinct.

Fig. 3.3(a) shows the final target state infidelity for a Hadamard gate operation implemented
using the three control strategies and for comparison we also show the uncontrolled auxiliary
evolution (black, dashed) for a linear ramp λ(t)= t/τ . As expected, CD and IE both achieve perfect
implementations regardless of the timescale of the drive (bottom-most dotted lines). The solid red
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Figure 3.2: We show the trajectories of the qubits for both the CD and IE protocols of the
Hadamard gate. We take the initial computational state to be |+⟩. The yellow line corresponds to
the path of the qubit in the IE case. The green and orange lines correspond to the computational
and auxiliary qubits of the auxiliary evolution cases, respectively, which begins and ends with a
separable global state of the two qubits while at intermediate times the reduced states of either
qubit are mixed.

curve corresponds to the FE Hamiltonian, Eq. (3.42). We note that the FE evolution approach
is exactly equivalent to the CD term only when the frequency of the Floquet driving is taken to
infinity, and is otherwise approximate for finite values. Despite the approximate nature of the FE
approach, provided that the chosen parameters are within the relevant regime of applicability [115],
this approach is still highly effective in implementing the controlled evolution, tracking the same
dynamics as the CD approach and maintaining an improvement of several orders of magnitude
over the uncontrolled implementation. In Fig. 3.3(b) we fix τ=1 and examine the computational
qubit’s approach to the target state during the evolution. This serves to demonstrate that despite
the actual dynamics giving rise to distinct paths, the effectiveness of all control protocols in terms
of gate infidelity is the same. The inset demonstrates that the FE drive is a remarkably accurate
approximation to the exact drive, showing small oscillations around the desired trajectory. While
Fig. 3.3(a) and (b) demonstrate that, at the level of implementation, all control protocols are
largely equivalent insofar as they can faithfully achieve the desired unitary, we will see in the
following some qualitative differences emerge when we consider alternative performance metrics.

We show the total cost of implementing the controlled gate operation, quantified using
Eq. (3.67), in Fig 3.4(a) and for simplicity we consider a linear ramp for all protocols. To begin
with, for very fast driving times, τ→0, we are in the opposite limit of adiabatic evolution and the
energetic costs of all control techniques diverge. This observation is in accordance with previous
works [41,126] which establish that the energetic resources necessary to drive a system arbitrarily
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Figure 3.3: (a) Final gate infidelity, Eq (3.66) as a function of total protocol duration, for the
Hadamard gate. The auxiliary evolution with counterdiabatic (CD) control is shown in the lower-
most green, dotted curve. Inverse engineering (IE) performs similarly shown by the blue, dotted
curve. The topmost, black, dot-dashed curve corresponds to an uncontrolled auxiliary evolution
where the performance is several orders of magnitude worse. Floquet engineered (FE) auxiliary
control is shown in the red, solid curve and is shown to be highly effective. (b) Dynamical gate
infidelity for the Hadamard gate with τ = 1 using the same styling as panel (a) to identify the
different control protocols. The inset captures the oscillations present in the FE driving around
the dynamics of the CD approach.

fast while keeping it in the adiabatic manifold requires to have access to arbitrarily large energetic
resources. Naturally, for longer quench durations we asymptotically reach the adiabatic limit of
the time evolution and the cost decays proportionally to 1/τ . Specifically, in the long time limit
the CD cost asymptotically approaches to 2

√
2, which corresponds to an unavoidable energy cost

given by the energy change of bare Hamiltonian of the driven auxiliary qubit, while for IE the cost
vanishes in the asymptotic limit. On the other hand, for the FE case, the leading term for the
cost in the long time limit is 2ω/ω0 and proportional to the frequency of the Floquet driving, i.e.
how many times the FE dynamics intersects with the true adiabatic dynamics. This requirement
for high frequency driving manifests in a higher energetic cost for achieving the control.

We now turn our attention to timekeeping errors, or equivalently pertubations to the control
field strength. For simplicity we focus on the case of IE, but remark the conclusions are qualitatively
similar for both the auxiliary evolution cases as the dynamical overlap with the target states for
the protocols coincide. In Fig. 3.4(b) we (arbitrarily) fix τ=1 and consider the performance of the
different ramp profiles given by Eqs (3.68) where we allow for the ramp to over- or under-shoot
the target time by a factor proportional to 1 ± ϵ. A simple linear ramp is the most susceptible
to this type of error, with the infidelity rapidly growing as ϵ increases. Therefore, while the linear
ramp has some notable advantages, e.g. resulting in a time-independent control term for IE [cfr.
Eq. (3.75)], this comes at the expense of requiring potentially costly accurate timekeeping [131].
In contrast, due to their smooth start and end points the polynomial and sinusoidal protocols allow
for more severe timekeeping errors while still faithfully implementing the gate, with timing errors
of up to 20% still achieving infidelities ≲ 10−4. This can be understood from the behaviour of
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Figure 3.4: (a) We plot the cost, Eq. (3.67), of implementing the Hadamard gate vs. total protocol
duration for IE, CD control, FE with ω/ω0 = 200 in blue, green, and red, respectively. (b) Final
gate infidelity for the Hadamard gate vs. timekeeping error, ϵ, for over- or under-shooting the
intended ramp duration. The total (ideal) ramp time is τ = 1. We show the performance for
the linear (orange), the polynomial (cyan), the sinusoidal (purple) ramps. In all panels we fix
ω0 =2π/τ , ω=200ω0 for the FE case.

these functions at their endpoints where the rate of change of the associated driving field remains
sufficiently small for ϵ < 0.2. As a result, the amplitude of obtaining the desired final state,
which is given by sin2(θfλ/2) [see Eq. (3.13) and (3.14)] does not significantly deviate from unity.
These results are consistent with complementary studies of different control problems [132] and
demonstrates that the flatness of the applied ramp around the target is an important feature to
have in terms of the robustness of the protocol.

The physical differences implied by the approaches become most apparent when considering
open system effects on state evolution. Fig. 3.5 presents our results on the infidelity between the
final state and the target state as a function of the total gate implementation time, scaled with
the decoherence rate for a dephasing environment and the explicit trajectories of the qubits. In
Fig. 3.5(a), we plot the trajectories of each qubit for the CD and IE Hadamard gate when the
driven qubits are exposed to a dephasing channel. For the CD case, not driving the computational
register directly can allay much of the spoiling effects of the environment. The auxiliary evolution
approach requires the driven qubit to end in state |1⟩. While the dephasing will leave the system in
a mixed state, it nevertheless can have a large overlap with the intended target state of the auxiliary
qubit which therefore still exhibits a good performance. Since we assume the computational qubit
in the CD case does not directly feel the spoiling effects of the dephasing channel, it simply stops
along its ideal trajectory when the auxiliary qubit falls short of its target state. In contrast, since
we drive the computational qubit directly in the IE case while also exposing it to the dephasing
channel, we see that IE qubit (yellow) starts in the |+⟩ state and is drawn towards the z-axis, away
from its ideal unitary dynamics by the environment. Fig 3.5(b) shows the final state infidelity
for Hadamard gate as a function of the dephasing strength. The CD case (blue) displays better
final state infidelity than the IE case (red) for all values of τγ. For larger gates, we expect that
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Figure 3.5: (a) Qubit trajectories for the Hadamard gate under a dephasing channel, Eq. (4.20),
where the channel acts on the driven qubit in each case with τγ=2. Styling is same as in Fig. 3.2.
As we dephase in the z-basis, both the state of the qubit in the IE case (yellow) and that of the
auxiliary qubit in the CD case (orange) are pulled towards the z-axis. The computational qubit
of the CD case (green) is not directly affected by the channel, and does not deviate from the
ideal path, instead stopping along that trajectory once the auxiliary qubit driving the evolution
has decohered. (b) We show the final gate infidelity, Eq. (3.66), for the dephasing channel for the
Hadamard gate, with upper, dotted red and lower, dashed blue curves correspond to the IE and
CD cases, respectively.

this difference will further widen in favour of the CD case. Despite the unfavourable cost scaling
and relative complexity of the CD Hamiltonian compared to IE methods, it represents a potential
attractive approach for robust gate implementation.

It is natural to consider extending the above framework to the implementation of N -qubit
gates. The preceding analysis can readily be performed for two-qubit entangling gates, such as
the controlled-phase gate [112, 116]. A qualitatively similar behaviour is observed: once again
the overall performance in terms of process infidelity is consistent across all control approaches.
Similarly, the effect of time-keeping errors is most significant for ramps that do not have smooth
end points. A notable difference emerges when considering the energetic cost. While the auxiliary
evolution approaches involve driving only a single qubit, and therefore the cost is essentially
bounded, they can nevertheless facilitate a gate operation on an arbitrary sized register. However,
this comes at the price of a difficult to implement Hamiltonian, Eq. (3.21), that requires many-
body interactions. This is in contrast to the IE approach where the register is controlled directly
and, as might be expected, the complexity and energy required to implement IE control on multiple
qubits scales poorly with the register size.
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3.4 Conclusions

We have systematically analysed the effectiveness CD, IE, and FE methods in the Hamiltonian
implementation of unitary quantum gates. As the figures of merit for all considered methods,
we have put the gate infidelity, the energetic cost, susceptibility to imperfect timekeeping, and
robustness against the effects of environmental noise at the centre of our discussion. We have
focused on the single qubit Hadamard gate and observed that all methods can faithfully achieve
the desired gate, however, show some notable qualitative differences when examining performance
metrics beyond target fidelities. For example, the energetic overhead of FE is the highest among
the considered methods, due to the high-frequency driving necessary to achieve a gate operation
closer to the ideal case. As for the imperfect timekeeping errors of the desired driving time, we
have observed a subtle dependence on how the Hamiltonian is driven. Smoother ramping of the
Hamiltonian results in a more successful gate implementation, in case the desired driving time
is over- or under-shot. Finally, we have assumed that the driven qubit in CD and IE methods
is in contact with a dephasing environment, and seen that the latter control technique is more
adversely affected by such environmental spoiling effects than the former due to the fact that
in this case computational degrees of freedom are affected by the noise. A qualitatively similar
behaviour can also be observed for a finite temperature dissipative environment. We considered
several commonly employed ramp profiles in order to highlight the natural robustness that each
approach has under the same conditions and to provide insight into the properties that robust
pulses should contain, e.g. smooth end points. This information can then be used to further
enhance performance through the tailoring of ramp profiles by, e.g. optimal control techniques.
However, the cost functional can be optimised over multiple metrics, such as energetic cost, pulse
bandwidth, and robustness to noise to name a few, and therefore this rapidly becomes a complex
problem.

We finally offer some comments on the applicability of these general Hamiltonians in light of
recent experimental work has been done to implement transitionless (or superadiabatic) gates on
promising candidate architectures, such as NV centres [133], superconducting qubits [134,135], and
rare-earth ions [136]. Indeed the possible universal gate sets generated by the inverse engineering
case discussed in this work presents an attractive prospect for applicability, owing to the relatively
simple forms and interactions present and the potential to drive them with time-independent
control fields. The counterdiabatic driving case represents a departure from the typical approach
to implementing a gate as it makes use of an additional auxiliary resource to mediate the driving.
One may view gates in this setting as controlled gates, the Hadamard gate is perfectly implemented
on the register qubit if the auxiliary qubit is driven to |1⟩ and the identity is performed on it if
the auxiliary is found in |0⟩. This implementation therefore requires a platform that can readily
achieve controlled-gates, e.g. trapped-ion systems [76].
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Chapter 4

Commutativity and the Emergence of
Classical Objectivity

In the previous chapter, we saw how decoherence - modelled by a Lindblad master equation
- prevented us from implementing high fidelity processes on qubits due to loss of coherence.
The channel used had a steady-state that left the system in a classically mixed state in the
computational basis. Decoherence theory provides the framework to understand the emergence of
mixed states from quantum dynamics [137]. It posits that the nature of the system-environment
interaction singles out a set of system states–the pointer states–which form a basis for the system’s
description and are robust to the deleterious effects of the interaction. It is the commutativity
between the system-environment interaction and the pointer basis that determines the classical
mixture which the system is driven to by the dynamics [137].

While decoherence accounts for how the classical mixed state is achieved, it must be augmented
to address the more general question of how we perceive classically objective states [138]. Decoher-
ence simply accounts for the irretrievable loss of coherence due to environmental interactions. For
a state to be objective, we require that multiple observers can access the same information about
the system in question without perturbing it and come to a consensus over its state. Quantum
Darwinism [138,139], and the more stringent strong quantum Darwinism [140–142], and spectrum
broadcast structures [143–145], attempt to address this issue in a mathematically rigorous manner
by treating the environment in a more active manner. The core tenet of quantum Darwinism
is that for a classically objective state to emerge, the system must proliferate information about
its configuration in the pointer basis to the environment. The standard framework that allows
for quantum Darwinism to emerge is that of pure decoherence - that is to say the populations
in the decoherence basis are untouched. The pointer states are the states of the decoherence
basis, and objectivity of the classical state that emerges is observed. An interesting modification
of this setup would be to allow for competition of two different environments on the system of
interest. This could be due to the presence of not just an external environment, but loss of local
coherence of a qubit to the rest of the computational register. The irretrivable loss of initially
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local information about the qubit into the rest of the system is a phenomenon known as quantum
information scrambling. Information scrambling within a system can be exactly described using
the framework of decoherence [146]. The question we wish to answer is under what conditions
do competing decohering channels allow for the emergence of quantum Darwinism. What follows
constitutes the original work found in Ref. [2], which was carried out in collaboration with Eoghan
Ryan and Mauro Paternostro of Queen’s University Belfast, as well as my supervisor Steve Camp-
bell. I contributed the numerical results that are included in this chapter, as well as to the overall
theoretical discussion of the work.

4.1 Introduction

Quantum Darwinism, introduced by Zurek [137, 147], builds from decoherence theory to provide
a mechanism for which information about a state gets redundantly encoded into an environment.
To outline the problem that Darwinism addresses, we first must introduce relative states. We
imagine a setup where we have both a quantum state |ψS⟩ of the system S and the state |M0⟩ of
an apparatus M. The two are initially uncorrelated. We can choose a basis for the Hilbert space
of the system - say {|Si⟩} and generalise its initial state as a linear combination over this basis.
The overall system-apparatus state then reads

|ψSM⟩ = (
∑
i

pi |Si⟩)⊗ |M0⟩ . (4.1)

We assume that for every possible state of the system, there will be a corresponding apparatus
state that correlates to it, allowing for read-out of the state. If the joint system evolves unitarily,
these correlations will form, resulting in the following state

|ψSM⟩ =
∑
i

pi |Si⟩ ⊗ |Mi⟩ . (4.2)

This superposition of measurement states leads to much of the uneasiness with the postulates
of quantum mechanics - all we require here is unitary evolution for the total state and the su-
perposition principle. It is easy to extend the above setup to that of an atom in a superposition
with a decay-triggered poison and cat all together in a box. One approach - the Copenhagen
Interpretation [148]- to the measurement problem is to simply draw a dividing line between the
classical and quantum world, to declare the measurement device as a macroscopic object to be
classical by decree. Classical objects do not abide by the superposition principle, and we shift
the problem of collapse only onto the microscopic system itself. What Darwinism demonstrates
is that a transition to a classically objective state of system and apparatus can emerge with the
postulates of quantum mechanics intact, and without resorting to a Copenhagen-style ontology.
If we move past the immediate concerns with (4.4) and continue with the postulates intact, we
find that the superposition postulate gives rise to another problem - that of basis ambiguity [149].
Instead of using {|Si⟩} as our basis for the Hilbert space of S, we can choose {|S ′

i⟩} or any of an
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infinite choice of representations. All contain the state of the systems

|ψS⟩ =
∑
i

pi |Si⟩ =
∑
i

p′
i

∣∣S ′
i

〉
. (4.3)

The same argument applies to the apparatus states, giving us

|ψSM⟩ =
∑
i

pi |Si⟩ ⊗ |Mi⟩ =
∑
i

p′
i

∣∣S ′
i

〉
⊗
∣∣M′

i

〉
. (4.4)

With infinite choices of basis, we must find a mechanism that constrains the choice to those states
that are physically observable. A solution to the basis ambiguity problem comes from decoherence
theory [149, 150]. We have seen decoherence previously with respect to the Lindblad master
equation, but here we will treat it in a microscopic way in order to illustrate its significance for
the basis ambiguity problem.

4.2 Pointer States

Consider that the system and apparatus interact with an environment, which itself starts in a pure
state |E0⟩ in some basis {|Ei}⟩. The global pure state of system-apparatus-environment, once all
are allowed to interact, is

|ψSME⟩ =
∑
i

pi |Si⟩ ⊗ |Mi⟩ ⊗ |Ei⟩ . (4.5)

Treating the newly introduced part of the global state as an environment implies that we should
employ the partial trace to give us only the parts of the state we should have access to

ρSM = TrE |ψSME⟩⟨ψSME | =
∑
i

|pi|2 |Si⟩⟨Si| ⊗ |Mi⟩⟨Mi| . (4.6)

By not taking the system and apparatus in isolation, and instead considering the global Hilbert
space that encompasses all interactions to be larger, we have made some progress towards the issue
at hand - the measurement apparatus is no longer in a pure state, but instead we see that it has
decohered into a mixture of states. This process is known as environment induced superselection,
or einselection [147]. This treatment does not even require the presence of the apparatus - the
mixture of states it decoheres to are reliant on those of the system we are interested in. We can
narrow our focus onto what set of states of the system are resiliant to the interaction with the
external degrees of freedom. We denote these as the pointer states [149]. We can define them
via the non-demolition observable [151]

O =
∏
i

pi |pi⟩⟨pi| (4.7)
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where |pi⟩ are the pointer states. The non-demolition observable by definition is the non-trivial
observable which commutes with the system-environment interaction Hamiltonian [152]

[HSE ,O ⊗ 1] = 0. (4.8)

Superpositions of the eigenspaces of O will be suppressed by interactions with the environment,
in the manner we have seen in Eq. (4.6). The reduced density matrix of the system ρS will then
be diagonal in the eigenbasis of O (where we consider the evolution by its own Hamiltonian to
be irrelevant for the dynamics compared to that of the interaction). We will refer to the time in
which it takes for the system to become diagonal in this basis as the decoherence time, denoted
as τD.
When the system has decohered it is described by a probability distribution of pointer states -
which could for example be position states. This naturally implies that the system is now classical,
it is in a definite classical state, although we will not know what state in particular it is in until a
measurement is performed. Decoherence causes a quantum-to-classical transition for the system,
and for macroscopic systems the decoherence time will be small compared to any other relevant
timescale for the system. Perhaps subtly, it is not the end of the measurement problem - it only
prescribes a way for the system to be described as a classical probability distribution of states, it
cannot determine exactly what classically accessible state the system evolves to, and thus the result
of the experiment. Zurek prescribes a method for determining which states should be considered
part of the preferred “classical” set - the predictability sieve [152]. Instead of looking for states
that are totally unaffected by the environment degrees of freedom, we can search merely for those
that are perturbed the least. The predictability sieve algorithm begins by initialising the system in
a pure test state |ti⟩ and allowing it to evolve. The von-Neumann entropy of the resulting reduced
density matrix of the system ρti is then

hti = −ρti log ρti . (4.9)

The entropy measures the lack of predictability of the state - or by proxy a lack of classicality. The
algorithm is run for all possible pure states, which are then ranked by the change in entropy. Those
which change the least are admitted into the set of preferred states while the rest are filtered out.
Clearly pointer states as defined previously will exhibit no increase in entropy, but we can also
uncover states that lie very close to them in terms of predictability. While this seems ad-hoc - it
is now seemingly arbitrary where to place the cut-off in the sieve - it allows for a relatively simple
way of uncovering what sorts of states that the decoherence process should select.

4.3 Quantum Darwinism and Classical Objectivity

We have seen how decoherence from the presence of an environment allows for a quantum-to-
classical transition of a system, as well as how it induces a basis of measurable states for the
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Figure 4.1: A heuristic diagram of how quantum Darwinism differs from the typical open system
picture. (a) displays the decoherence paradigm, where the environment is treated as a monolithic
bath into which the coherence of the system flows into. (b) displays the Darwinism paradigm. Here
the environment is divided into sub-environments that are individually accessible to measurements.
Treating the environment in a more active manner allows for us to study the type of correlations
that emerge between the system and environment as the latter decoheres the former.

system. For Zurek, in order for a state to truly be classical it must also be objective. Objective
in this sense means that multiple observers have access to and can reach a consensus on the
state of the system. A system in a classically objective state should be unperturbed by these
independent measurements. Quantum Darwinism [70, 137,147] explains how such a state can be
induced from interaction with an environment. Darwinism captures this in spirit by treating the
environment microscopically. Information about the system must propagate into the environment
in such a way that it is simultaneously available to all observers, who can learn about the system
without perturbing it, and can reach a consensus about what the state of the system is. We do
not directly probe a system we are interested in, instead information about the state is carried to
us indirectly, say through photons carrying correlations with the system. In this spirit, Darwinism
enforces structure on the environment. The total environment, E , is considered as a collection of
smaller fragments with which the system interacts and is able to share information

HE = HE1 ⊗HE2 ⊗ ...⊗HEN
. (4.10)

Figure 4.1 displays the difference between the typical open system paradigm and that of quan-
tum Darwinism. What is formerly a monolithic environment, potentially modelled by a master
equation, is treated in a more active manner by dividing it into sub-environments. Here sub-
environments interact with the system and are accessible via measurements by an observer. What
quantum Darwinism searches for is interactions that allow for multiple fragments of the environ-
ment to each have full information about the system. In this way the system will have encoded its
state redundantly in the environment - i.e. having access to more fragments of the environment
does not reveal more about the system.

Observers can each query one (or more) of the fragments of the environment. We note

58



that depending on the precise nature of the system-environment interaction or intra-environment
interactions, we may need to consider several environmental degrees of freedom together as a
single fragment in order to see a redundant encoding. As we outlined earlier, einselection occurs
between the system and the environment, correlating the state of each environmental fragment
with the pointer states of the system

|ψSE⟩ =
∑
i

pi |pi⟩ ⊗
∣∣∣E1
i

〉
⊗ ...⊗

∣∣∣ENi 〉 . (4.11)

This branching form of the state is essential a generalised GHZ state. It is clear that it is the
distinguishability between the states of an environmental fragment that branch from the pointer
state of the that allows for an observer to extract pi from measurements on the fragment alone.
In the case that the conditional states of each fragment {

∣∣E i〉} are orthogonal, we call the global
state in (4.3) a spectrum broadcast structure [153]. Einselection induces a structure that has
proliferated information about the pointer states of the system throughout the environment, and
measurements on each fragment or collection of fragments will not perturb the others. In order
to satisfy the consensus requirement, we wish to see redundancy of information about the pointer
states in the environment. The principle quantity of interest to see this is the quantum mutual
information

I(S : Ef ) = h(ρS) + h(ρEf
)− h(ρS , ρEf

), (4.12)

where h(·) denotes the von Neumann entropy, and ρS is the density matrix of the system. While we
divide the environment in to Nsub-environments, we can in principle take several sub-environments
together as a fragment F . In this way, ρEf

is the density matrix of the fraction of the environment,
f =F/E , which an observer has access to. When I(S : Ef ) =H(S), the information about the
system is stored completely in the fragment Ef . An observer who is able to interrogate this
fragment will have access to all the available system information, and importantly, no additional
information can be obtained even if a larger fraction of the environment is accessible [138]. Such
a condition naturally implies a notion of objectivity, as two observers querying different fragments
of the environment will nevertheless have access to the same system information. The system is
therefore said to have redundantly encoded its state into the environment degrees of freedom and
this redundancy is witnessed by a characteristic plateau in the mutual information, Eq. (4.12), for
increasingly larger fractions of the environment. The upper bound on mutual information that
an environmental fragment can hold about the system is simply the von Neumann entropy of the
system. This limit is dependent on the initial state of the system, so we will use the rescaled
mutual information between fragments of the accessible environment and the system

I = I(S : Ef )
h(S) , (4.13)

which will show maximum correlation between the system and an environmental fragment when
I = 1 regardless of the entropy of the system.
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Figure 4.2: We plot the rescaled mutual information between a bath of seven qubits and a system
qubit that interact with a dephasing-type interaction in the computational basis. Initially the
system and environment begin in a pure product state with no correlations or mutual informa-
tion between them. After some time(Jt = 0.6 in this case) correlations proliferate through the
environment as prescribed by Quantum Darwinism, resulting in the above redundancy plateau.

As an illustrative example, let us consider a single qubit, initialised in the |+⟩ state. It interacts
simultaneously with 7 qubits, which we also initialise in the |+⟩ state. We regard each of the 7
qubits as an environmental fragment. For interactions with the environment which give rise to a
pure decoherence for the system, i.e. those interactions which only affect the coherences and leave
the populations unchanged, it is known that such interactions lead to the type of global system-
environment configurations that support classically objective states [154, 155]. This is precisely
the phenomological model of an open system that we discussed previously in Chapter 3. Therefore
we take the interaction Hamilitonian between the system and the i′th environmental fragment to
be

Hint = −JσSz σEi
z . (4.14)

We let the global system evolve unitarily, and find the mutual information between the system
and different sized collections of environmental fragments. The results are shown in Fig. 4.2.
We see that after some time, the mutual information between the system and any one of the
fragments maximises to h(S). Interrogating larger fractions of the environment does not give us
access to any more information about the state - it has been encoded redundantly. Only when we
probe the entire environment do we find the mutual information of both system and environment.
We refer to the shape of the figure we plot as the redundancy plateau.

This framework has been extensively explored for a system in contact with a single, possibly
complex, bath [154–178] where the role of different bath characteristics can have a significant affect
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on the system’s ability to redundantly encode its information within the bath [179–183]. The key
characteristic of the system-bath interaction is that it should be able to support a pointer basis -
i.e. there are states of the system that are robust to decoherence, and that it generates few if any
correlations between environmental fragments. A bath that has interactions between its degrees
of freedom will wash out redundant encoding of the pointer states due to quantum information
scrambling. Any correlations between environmental fragments will prevent the emergence of
spectrum broadcast structures. As we shall see, direct interaction between the environmental
fragments is not the only mechanism that causes information to mix in the environment.

We wish to consider a complementary setting where the system is in contact with two baths,
one which we refer to as the “accessible” environment which consists of the fragments that
hypothetical observers would be able to measure. The accessible environmental fragments do
not interact directly with each other. As in our example above, will assume that this accessible
environment gives rise to a purely dephasing dynamics on the system which, in the absence of
any other influences, provides the conditions necessary for quantum Darwinism and spectrum
broadcast structures to be exhibited. In addition we assume that the system is also in contact
with a second “inaccessible” bath. We aim to explore how the nature of this inaccessible bath
effects the system’s ability to redundantly encode information about its pointer states into the
accessible environment’s degrees of freedom.

We examine the microscopic model for the multiple bath setting, considering a minimal model
for the accessible environment consisting of three qubits inducing a pure dephasing dynamics on
the system, while we employ a collision model [184–186] to simulate the inaccessible environment.

4.4 Collisional-model picture of the system-environment interac-
tion

We consider the situation as depicted in Fig. 4.3(a) where the system of interest, S with free
Hamiltonian HS = σSz , is in contact with two distinct environments, one composed of a small
number of constitutions which we refer to as the accessible environment and represents the degrees
of freedom which an observer would have access to. As in our example, we take the Hamiltonian
governing the interaction between the system of interest and the fragments of the accessible
environment, labelled Ai, to be

HSA = JSA
∑
i

(σSz ⊗ σAi
z ). (4.15)

Here σkp is the p = x, y, z Pauli operator of either the system (for k = S) or one of the fragments
(when taking k = Ai, ∀i). We stress that redundancy is in terms of the size of an environment
that the observer has access to - whether the observer has access to a single fragment, or the
majority of the environment, they can only extract at most h(ρS) bits of information, until they
have access to the entire environment at which point they can extract h(ρS) + h(ρE) bits of
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information. For clarity, in what follows we will restrict the size of the accessible environment to
three subsystems, which is the smallest size required for characteristic redundancy plateaux to be
observed. With two accessible qubits, we would not find a plateau, as a measurement over both
qubits would constitute the entire environment. Larger accessible environments than three qubits
considered in the same way will simply result in faster times in which the redundancy plateau
emerges. As we saw before, this setting will recover clear Darwinistic features.

In addition to the accessible environment, we allow the system of interest to be coupled to
a second inaccessible bath, which could in principle be of a different nature. Such a setting
is physically well motivated: nothing precludes augmenting the original paradigm of quantum
Darwinism to allow for the system to be simultaneously coupled to a thermal bath for instance.
Recently the delicate interplay between whether it is possible for states to be both thermal and
classically objective has been explored [172]. Here, we address a complementary setting in order
to gain qualitative insight into how the nature of the interactions between a system and an
inaccessible environment affect the system’s ability to redundantly proliferate information into
accessible environmental degrees of freedom. To this end, we rely on a collision model description
of the inaccessible environment.

Collision models provide a versatile tool for modelling open system dynamics and are particularly
suited to our purposes [155, 184, 185]. Collision models simulate open systems by allowing the
system to interact with a single incoming environmental unit for a short period of time, after which
this unit is traced out and a “fresh” unit is introduced, therefore capturing the inaccessible nature
of the environment we are modelling as any information regarding the state of the system which
is imprinted on these units is irretrievably lost. A further advantage of exploiting the collisional
model framework is that it allows to simulate different physically relevant environmental dynamics
by simply tuning the microscopic details of the interaction. Care must be taken in this context: if
the system-environment interaction does not commute with the system’s Hamiltonian, the free-
evolution of the system must be taken into account [187,188]. However we will only consider two
system-environment interactions that give rise to physically relevant dynamics, namely dephasing
and thermalisation, and are unaffected by the inclusion of the free evolution term. The respective
Hamiltonians are

HD
SEj

= JSE(σSz ⊗ σ
Ej
z ),

HT
SEj

= JSE(σSx ⊗ σ
Ej
x + σSy ⊗ σ

Ej
y ),

(4.16)

where Ej is the label for the jth unit of the inaccessible environment modelled through the
collisional picture.

The system then interacts stroboscopically with the environments, first colliding for a time τ1

with the all accessible fragments, then interacting with the collisional bath for a time τ2, i.e.

ρ(n+ 1) = USEUSAρ(n)U †
SAU

†
SE , (4.17)

where USA = exp{−iHSA}τ1 and USE = exp
(
−iHSEjτ2

)
. The accessible fragments and system

62



(a)

<latexit sha1_base64="LDPK6VLOU4FRKAgjy4EPqZqWZ8o=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuiG5cV7QOmQ8mkmTY0kwxJRihDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJpxp47rfTmlldW19o7xZ2dre2d2r7h+0tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxbe53nqjSTIpHM0loEOOhYBEj2FjJ78XYjAjm2cO0X625dXcGtEy8gtSgQLNf/eoNJEljKgzhWGvfcxMTZFgZRjidVnqppgkmYzykvqUCx1QH2SzyFJ1YZYAiqewTBs3U3xsZjrWexKGdzCPqRS8X//P81ETXQcZEkhoqyPyjKOXISJTfjwZMUWL4xBJMFLNZERlhhYmxLVVsCd7iycukfVb3Luvn9xe1xk1RRxmO4BhOwYMraMAdNKEFBCQ8wyu8OcZ5cd6dj/loySl2DuEPnM8fjkSRcQ==</latexit>S

<latexit sha1_base64="3bgGgjP79PjiG2qQ0ILOJt1ysKc=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuqG5cV7APaoWTSTBuaZMYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x80dZQoQhsk4pFqB1hTziRtGGY4bceKYhFw2gpGd5nfGlOlWSQfzSSmvsADyUJGsLGS3xXYDAnm6c205/XKFbfqzoCWiZeTCuSo98pf3X5EEkGlIRxr3fHc2PgpVoYRTqelbqJpjMkID2jHUokF1X46Cz1FJ1bpozBS9kmDZurvjRQLrScisJNZSL3oZeJ/Xicx4bWfMhknhkoyPxQmHJkIZQ2gPlOUGD6xBBPFbFZEhlhhYmxPJVuCt/jlZdI8q3qX1fOHi0rtNq+jCEdwDKfgwRXU4B7q0AACT/AMr/DmjJ0X5935mI8WnHznEP7A+fwBoGiSAw==</latexit>A1

<latexit sha1_base64="70ay3g5GWf/dIwf3DtTMR86hkE0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6rLqxmUF+4B2KJk004ZmkjHJFMrQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+QEMWfauO63s7K6tr6xWdgqbu/s7u2XDg6bWiaK0AaRXKp2gDXlTNCGYYbTdqwojgJOW8HoLvNbY6o0k+LRTGLqR3ggWMgINlbyuxE2Q4J5ejPtVXulsltxZ0DLxMtJGXLUe6Wvbl+SJKLCEI617nhubPwUK8MIp9NiN9E0xmSEB7RjqcAR1X46Cz1Fp1bpo1Aq+4RBM/X3RoojrSdRYCezkHrRy8T/vE5iwms/ZSJODBVkfihMODISZQ2gPlOUGD6xBBPFbFZEhlhhYmxPRVuCt/jlZdKsVrzLyvnDRbl2m9dRgGM4gTPw4ApqcA91aACBJ3iGV3hzxs6L8+58zEdXnHznCP7A+fwBoeySBA==</latexit>A2

<latexit sha1_base64="8HbFQRTy8V1vXtbQ9+krAjvy91k=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuqG5cV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x80tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLRXea3xlRpJsWjmcTUj/BAsJARbKzkdyNshgTz9GbaO++VK27VnQEtEy8nFchR75W/un1JkogKQzjWuuO5sfFTrAwjnE5L3UTTGJMRHtCOpQJHVPvpLPQUnVilj0Kp7BMGzdTfGymOtJ5EgZ3MQupFLxP/8zqJCa/9lIk4MVSQ+aEw4chIlDWA+kxRYvjEEkwUs1kRGWKFibE9lWwJ3uKXl0nzrOpdVs8fLiq127yOIhzBMZyCB1dQg3uoQwMIPMEzvMKbM3ZenHfnYz5acPKdQ/gD5/MHo3CSBQ==</latexit>A3

Ej+1
<latexit sha1_base64="vdzf6QRjZ+nnpgHeNrUUrRW2VCQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LInisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVA44T7kd0oEQoGEUrtW572eOZN+mVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3dCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtPfSV9ozlCOLaFMC3srYUOqKUObUMmG4C2+vEya51XPrXr3F5XadR5HEY7gGE7Bg0uowR3UoQEMRvAMr/DmJM6L8+58zFsLTj5zCH/gfP4Asb2PIg==</latexit><latexit sha1_base64="vdzf6QRjZ+nnpgHeNrUUrRW2VCQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LInisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVA44T7kd0oEQoGEUrtW572eOZN+mVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3dCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtPfSV9ozlCOLaFMC3srYUOqKUObUMmG4C2+vEya51XPrXr3F5XadR5HEY7gGE7Bg0uowR3UoQEMRvAMr/DmJM6L8+58zFsLTj5zCH/gfP4Asb2PIg==</latexit><latexit sha1_base64="vdzf6QRjZ+nnpgHeNrUUrRW2VCQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LInisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVA44T7kd0oEQoGEUrtW572eOZN+mVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3dCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtPfSV9ozlCOLaFMC3srYUOqKUObUMmG4C2+vEya51XPrXr3F5XadR5HEY7gGE7Bg0uowR3UoQEMRvAMr/DmJM6L8+58zFsLTj5zCH/gfP4Asb2PIg==</latexit><latexit sha1_base64="vdzf6QRjZ+nnpgHeNrUUrRW2VCQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LInisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVA44T7kd0oEQoGEUrtW572eOZN+mVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3dCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtPfSV9ozlCOLaFMC3srYUOqKUObUMmG4C2+vEya51XPrXr3F5XadR5HEY7gGE7Bg0uowR3UoQEMRvAMr/DmJM6L8+58zFsLTj5zCH/gfP4Asb2PIg==</latexit>

Ej
<latexit sha1_base64="KWHxWM9jF9EurNbKDjm1hLaByJU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeiyK4LGCaQttKJvtpl272YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7RV3t7Z3duvHBw2TZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK3k3/byx0mvUnVr7gxkmXgFqUKBRq/y1e0nLIu5QiapMR3PTTHIqUbBJJ+Uu5nhKWUjOuAdSxWNuQny2bETcmqVPokSbUshmam/J3IaGzOOQ9sZUxyaRW8q/ud1MoyuglyoNEOu2HxRlEmCCZl+TvpCc4ZybAllWthbCRtSTRnafMo2BG/x5WXSPK95bs27v6jWr4s4SnAMJ3AGHlxCHe6gAT4wEPAMr/DmKOfFeXc+5q0rTjFzBH/gfP4A2MuOsg==</latexit><latexit sha1_base64="KWHxWM9jF9EurNbKDjm1hLaByJU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeiyK4LGCaQttKJvtpl272YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7RV3t7Z3duvHBw2TZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK3k3/byx0mvUnVr7gxkmXgFqUKBRq/y1e0nLIu5QiapMR3PTTHIqUbBJJ+Uu5nhKWUjOuAdSxWNuQny2bETcmqVPokSbUshmam/J3IaGzOOQ9sZUxyaRW8q/ud1MoyuglyoNEOu2HxRlEmCCZl+TvpCc4ZybAllWthbCRtSTRnafMo2BG/x5WXSPK95bs27v6jWr4s4SnAMJ3AGHlxCHe6gAT4wEPAMr/DmKOfFeXc+5q0rTjFzBH/gfP4A2MuOsg==</latexit><latexit sha1_base64="KWHxWM9jF9EurNbKDjm1hLaByJU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeiyK4LGCaQttKJvtpl272YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7RV3t7Z3duvHBw2TZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK3k3/byx0mvUnVr7gxkmXgFqUKBRq/y1e0nLIu5QiapMR3PTTHIqUbBJJ+Uu5nhKWUjOuAdSxWNuQny2bETcmqVPokSbUshmam/J3IaGzOOQ9sZUxyaRW8q/ud1MoyuglyoNEOu2HxRlEmCCZl+TvpCc4ZybAllWthbCRtSTRnafMo2BG/x5WXSPK95bs27v6jWr4s4SnAMJ3AGHlxCHe6gAT4wEPAMr/DmKOfFeXc+5q0rTjFzBH/gfP4A2MuOsg==</latexit><latexit sha1_base64="KWHxWM9jF9EurNbKDjm1hLaByJU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeiyK4LGCaQttKJvtpl272YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7RV3t7Z3duvHBw2TZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK3k3/byx0mvUnVr7gxkmXgFqUKBRq/y1e0nLIu5QiapMR3PTTHIqUbBJJ+Uu5nhKWUjOuAdSxWNuQny2bETcmqVPokSbUshmam/J3IaGzOOQ9sZUxyaRW8q/ud1MoyuglyoNEOu2HxRlEmCCZl+TvpCc4ZybAllWthbCRtSTRnafMo2BG/x5WXSPK95bs27v6jWr4s4SnAMJ3AGHlxCHe6gAT4wEPAMr/DmKOfFeXc+5q0rTjFzBH/gfP4A2MuOsg==</latexit>

Ej�1
<latexit sha1_base64="Itm0SYjngdH/vduTgJsQycYuAMM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FETxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqAccJ9yM6UCIUjKKVWre97PHMm/TKFbfqzkCWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+bnTshJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDKz4RKUuSKzReFqSQYk+nvpC80ZyjHllCmhb2VsCHVlKFNqGRD8BZfXibN86rnVr37i0rtOo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8AtMmPJA==</latexit><latexit sha1_base64="Itm0SYjngdH/vduTgJsQycYuAMM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FETxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqAccJ9yM6UCIUjKKVWre97PHMm/TKFbfqzkCWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+bnTshJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDKz4RKUuSKzReFqSQYk+nvpC80ZyjHllCmhb2VsCHVlKFNqGRD8BZfXibN86rnVr37i0rtOo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8AtMmPJA==</latexit><latexit sha1_base64="Itm0SYjngdH/vduTgJsQycYuAMM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FETxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqAccJ9yM6UCIUjKKVWre97PHMm/TKFbfqzkCWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+bnTshJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDKz4RKUuSKzReFqSQYk+nvpC80ZyjHllCmhb2VsCHVlKFNqGRD8BZfXibN86rnVr37i0rtOo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8AtMmPJA==</latexit><latexit sha1_base64="Itm0SYjngdH/vduTgJsQycYuAMM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FETxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqAccJ9yM6UCIUjKKVWre97PHMm/TKFbfqzkCWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+bnTshJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDKz4RKUuSKzReFqSQYk+nvpC80ZyjHllCmhb2VsCHVlKFNqGRD8BZfXibN86rnVr37i0rtOo+jCEdwDKfgwSXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8AtMmPJA==</latexit>
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Figure 4.3: (a) Schematic of the microscopic collision model employed. (b,c) Rescaled mutual
information, I, for (b) dephasing collisional environment and (c) thermalising collisional environ-
ment. We fix JSAτ1 = 0.0075π/4 and JSEτ2 = 0.015π/2 and β= 0. For both interactions the
collisional environment drives the system towards afully decohered state, however, in the case of a
dephasing interaction the mutual information shared between system and accessible environment
fragments shows the characteristic redundancy plateau transiently emerges with period dictated
by the JSA interaction strength. For a thermalising collisional bath there is an overall envelope
where the redundancy plateaux are progressively damped. As elucidated in Sec. 4.5 this behaviour
is explained by the commutativity, or lack thereof, between the system-environment interaction
and system-accessible fragment interaction. In the dephasing case, the ability of the environmen-
tal fragments to create classical correlations with the system is unaffected by the presence of the
collisional environment as the interactions commute, while this is not the case for a thermalising
environment, which serves to fully decohere the fragments as well as the system in the long time
limit.

are assumed to be initially prepared in state |+⟩ = (|0⟩+ |1⟩)/
√

2 with σz |0⟩ = |0⟩ and σz |1⟩ =
− |1⟩. Each incoming collisional unit is initialised in a Gibbs state with dimensionless inverse
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Figure 4.4: Mutual information between the system and a single accessible environmental fragment
(dashed grey), the system coherence (dot-dashed red), and the fragment coherence (solid blue).
(a) Dephasing collisional bath and (b) thermalising collisional bath. The system’s coherence (dot-
dashed red) is identical in both cases, the collisional bath will fully decohere in the long-time limit.
The primary difference between the two cases is that the coherence of the accessible environmental
qubit is dampened by the thermalising bath despite not coupling to it directly.

temperature β, i.e.

ρEi = 1
2

(
1 + tanh(β) 0

0 1− tanh(β)

)
. (4.18)

The system-accessible environment starts in a product state ρ(0) = ρS(0)
⊗3

i=1 ρAi(0). For
simplicity we take infinite temperature collisional units, however we remark, up to some minor
qualitative differences, our results hold for finite temperatures. The infinite temperature assump-
tion together with the considered initial states means that the resulting dynamics for the system
is identical regardless of whether the interaction between system and collisional bath gives rise to
dephasing or thermalisation.

We begin examining the mutual information shared between the accessible fragments and the
system. For a dephasing interaction between the collisional bath and the system, Fig. 4.3(b) shows
that the characteristic redundancy plateau emerges. For short time dynamics, where the effects
of the collisional bath are small, the rise in mutual information when an observer has access to all
constituents of the accessible environment, and therefore f=1, is evident. For longer times, where
the collisional bath is able to decohere the system, we find that redundancy of the information
shared between the system and accessible fragments is maintained, however, now there is no rise
when an observer has access to all accessible fragments. In essence, while the system shares
correlations with the collisional bath, it is still able to share the relevant classical information
with fragments of the accessible environment. The emergence of the characteristic redundancy
plateaux are periodic. This is due to the small size of the considered accessible fragments, with
the period being fully determined by the strength of the system-fragment interaction, JSAτ1. The
interplay between the two environments becomes more interesting when we move away from pure
dephasing, and instead allow for an interaction between system and collisional bath that gives rise
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to thermalisation, as shown in Fig. 4.3(c). The short time dynamics is qualitatively similar, and
this is again due to the fact that we have a separation of timescales between the two baths. At
intermediate times, we see that the mutual information continues to plateau when an observer
has access to larger fractions of the accessible environment. However, its value is no longer equal
to the system entropy, therefore indicating that while information is being redundantly encoded,
an observer cannot gain access to all the classical information about the state of the system due
to the interaction with the thermalising environment. For very long interaction times we see that
the information shared between system and accessible fragments I → 0, indicating the complete
loss of all correlations - our global system has experienced “heat death.”

We reiterate that the system undergoes an identical evolution in both cases for the considered
parameters. Given the choice of initial conditions, the populations remain fixed and the effect of
the collisional bath is to simply dampen the coherences present in the system. We demonstrate
this explicitly in Fig. 4.4 where the dashed red curve shows the behaviour of the coherence term
of ρS [189]

C =
∑
i,j

∣∣∣(ρS)ij
∣∣∣ , (4.19)

and is identical for both dephasing interactions (Fig. 4.4 (a)), and thermalising interactions
(Fig. 4.4 (b)), with the collisional bath. If we focus on only a single accessible fragment, we
can see a striking difference that the form of the system-inaccessible bath interaction has on the
properties and correlations that the accessible fragment shares with the system. For a dephasing
collisional bath, Fig. 4.4(a), we show the dynamics of the fragment coherence and the (rescaled)
mutual information shared between this fragment and the system, solid blue and dashed grey
curves, respectively. Periodic behaviour is exhibited, with perfect classical correlations established
between the system and fragment when the accessible qubit’s coherence term vanishes, with this
behaviour persisting regardless of the fact that the system coherence term is being damped by
the collisional bath. In contrast, for the thermalising inaccessible bath we find that the accessible
fragment loses coherence in line with the behaviour of the system. The accessible environmental
qubits must “trade” their coherence for classical correlations with the system. Despite not coupling
to the thermalising bath directly, their maximum coherence is dampened over time. This in turn
reduces their ability to generate classical correlations with the system, with the overall effect being
that all coherence and correlations are destroyed by the thermalising interaction in the long time
limit [172]. A similar effect is seen for “structured” baths [170, 171], where interactions between
accessible environmental qubits will cause Quantum Darwinistic characteristics to disappear over
time.

Therefore, despite the dynamics of the system being identical in these two situations, the abil-
ity for the system to establish the requisite correlations is strongly dependent on the nature of the
interaction with the inaccessible environment. While other choices of initial states and/or inacces-
sible bath temperatures will present minor quantitative differences, the overall picture remains the
same: pure dephasing interactions between the inaccessible bath and the system always allows for
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perfect redundancy of information to be encoded within the accessible environment, while thermal-
ising interactions will eventually destroy all correlations leading to a loss of classical objectivity. As
we will see, the reason for this difference in behaviour is rooted in the non-commutativity between
the interactions of the system with the two separate baths.

4.5 Role of commutativity

In the previous section we demonstrated that the nature of the system-inaccessible environment
can have a significant effect on whether the conditions for classical objectivity over time are fulfilled
or not. We can gain insight into the reason for this dichotomy by examining the commutativity
between the various interactions. As the accessible environment fragments are non-interacting with
each other, and due to the considered form of the system-fragment Hamiltonians, we can restrict
our attention to only a single qubit of the accessible environment since, given the symmetry of
setting, the exhibited behaviour is identical for each individual accessible fragment. We can recast
the problem using standard tools from open quantum systems, with the system simultaneously
coupled to a GKSL bath and a single auxiliary qubit [190–193]. The dynamics of the system-
accessible fragment is therefore governed by the Markovian master equation

ρ̇SA = −i[HSA, ρSA] + L(ρSA). (4.20)

The superoperator, L(·), determines the effect that the inaccessible environment has on the system.
As previously, we consider both situations where L gives rise to dephasing and thermalisation
affecting the system only, i.e.

LD(ρ) = γ(σSz ρσSz − ρ),

LT (ρ) = γ(n̄+ 1)
(
σS−ρσ

S
+ −

1
2[ρ, σS+σS−]

)
+ γn̄

(
σS+ρσ

S
− −

1
2[ρ, σS−σS+]

)
,

(4.21)

where n̄ = 1/(eβ − 1) is the mean number of thermal excitations in the environment. We can
readily solve Eq. (4.20) for both types of bath and determine the reduced states for both system
and accessible fragment. For clarity we fix both the accessible qubit and system to have the same
initial state ρS(0)=ρA(0)= |+⟩⟨+|, although remark that our results are qualitatively unaffected
for other suitable choices. In the case of dephasing, the system’s populations are unaffected,
while for a thermalising bath the populations are driven to the relevant values as dictated by the
canonical Gibbs state given by the choice of n. Regardless of the nature of the system-inaccessible
environment interaction, the accessible fragment’s populations are invariant. We find that it is the
behaviour of the coherence terms in the various reduced density matrices that determine whether
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classically objective states can be achieved. The coherences are given by

dephasing:

⟨0| ρ
D
S |1⟩ = e−2γt cos (Jzt) ,

⟨0| ρDA |1⟩ = cos (Jzt) /2,

thermalising:


⟨0| ρTS |1⟩ = e−γ(n̄+ 1

2 )t cos (Jzt) ,

⟨0| ρTA |1⟩ = e−(γ+2n̄γ+α)t/2

4α
[
(eαt+1)α+γn̄(eαt−1)

]
,

(4.22)

where γn̄ = γ(2n̄+1) and α=
√
−4Jz(Jz + iγ) + γ2

n̄. We see that for both types of environment,
the system coherence undergoes two competing effects. The dephasing interaction with the ac-
cessible fragment gives rise to an oscillatory behaviour, while the interaction with the inaccessible
environment leads to an exponential decay. Regardless of the nature of the inaccessible bath,
the system coherence will vanish asymptotically. If we turn our attention to the behaviour of
the fragment’s coherence we see the markedly different effect that the nature of the inaccessible
environment now has. For a dephasing Lindblad bath, due to the fact that the interactions of
the system with the two baths commute, we find that the accessible fragment is blind to the
presence of the inaccessible bath, with its coherence term oscillating with a period dictated by
the strength of the system-fragment interaction [155], while the Lindblad bath has no effect on
its dynamics. In contrast, for a thermalising bath, we see that despite the accessible fragment
not interacting directly with the Lindblad bath, its coherence term is nevertheless exponentially
suppressed. This, in conjunction with the behaviour of the system coherence term, means that
no correlations can be maintained in the long time limit, leading to the loss of the conditions
necessary to support classically objective states. It is worth stressing the difference between the
system-inaccessible environment interactions, which is clearly seen when considering the micro-
scopic description captured by Eq. (4.16). In the case of dephasing, purely informational exchange
occurs, while the thermalising interaction supports both information and energy exchanges, with
the latter destroying all correlations in the long time limit.

4.6 Conclusions

In this chapter we have examined the emergence and suppression of signatures of classical objec-
tivity when a system is in contact with multiple environments. Assuming an observer can query
an accessible environment, which interacts with the system via pure dephasing interactions, which
are known to support the conditions necessary for the establishment of classically objective states,
we have demonstrated that the nature of the interaction of the system with the remaining inac-
cessible environment(s) can drastically affect the establishment of classical objectivity, as captured
by quantum Darwinism. We have shown that for system-inaccessible environment interactions
that commute with the system-accessible environment interaction, the relevant system informa-
tion can proliferate into the accessible fragments since these environmental degrees of freedom
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are unaffected by the presence of the other bath. However, for other interaction terms which do
not commute with the system-accessible Hamiltonian, while partial redundancy can be established
transiently, the interaction of the system with the inaccessible environment leads to the loss of all
correlations, and thus also of the loss of the conditions for classical objectivity. We established
that the commutativity between the two Hamiltonians governing how the system interacts with
the respective baths dictates whether conditions for classical objectivity can be maintained in the
long-time limit. Our results indicate that commutativity plays a central role in a system’s ability
to redundantly encode its information and may be complementary to the subtle role that com-
mutativity plays in, for instance, equilibration which has recently been established [194–196] or
accurately modelling open system dynamics [197].

One may make the argument that this latter scenario, where the redundancy plateau emerges
only transiently, but is washed out in the long-time limit is a more reasonable model of the
emergence of classical objectivity. In our scenario we observe heat-death in our toy universe, with
a small window in which classical objectivity is allowed. A similar scenario is observed in [198].
Here Riedel, Zwolak, and Zurek couple a central spin to only a single environment, but allow for
Ising-type interactions between the spins that constitute that environment. Similarly, they see
that quantum Darwinism emerges only for intermediate times, before environmental interactions
eventually scramble all the information about the system, and the global state equilibriates. As
we have seen in our work, information scrambling in the environment is not the only cause of this
equilibration, simply having non-commuting interactions on the system is enough. One natural
question would then be to ask how “natural” is quantum Darwinism? We have selected specific
interactions on an object that we give special status to as a system. Relaxing these assumptions
may look like a lattice of spins with random nearest-neighbour interactions with strengths drawn
from the same distribution. The homogeneous and isotropic setup we have outlined above will not
allow for Darwinism as even if there were interactions that distinguished a single site with a pointer
basis, there is no separation of timescales between Darwinism and scrambling. In recent times
much work has been done into classifying the types of interactions and partitions that would allow
for quantum Darwinism [171,199], typically with an aim at finding scenarios in which Darwinistic
features are maintained for long times. It is the view of the author that it is enough to search
for setups with minimal assumptions that allow for Darwinism transiently in the face of inevitable
information scrambling and thermalisation of the global system. Such an outcome is a generic
phenomenon for quantum systems with interactions, with few notable exceptions. In the next
chapter we will delve into this phenomenon in more detail.
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Chapter 5

Operator Spread Complexity

In classical computation, the complexity of a Boolean function refers to the number of elementary
operations needed to evaluate it. Complexity allows one to classify problems based on how their
evaluation scales with the size of the input. “Easy” problems are regarded as those that can be
solved in a number of steps that is a polynomial of the number of inputs, while “hard” functions
to evaluate are those whose evaluation involves a number of operations that scale exponentially
with the number of inputs. The circuit-based model of quantum computing allows for a similar
definition of complexity, namely the minimal-size circuit that evaluates the problem to a high-
precision, albeit with some ambiguity over what particular universal set of gates are admitted.

There is much motivation for defining a complexity measure for specific quantum mechanical
models [200]. For instance, we could similarly define a notion of state complexity by the depth
of the circuit needed to engineer the state from an initial state [201]. States that are easy to
prepare should involve circuits that have a depth that scales polynomially with the number of
qubits, meaning that they physically can be prepared in polynomial time. The volume of these
preparable states occupy a vanishingly (exponentially) small portion of Hilbert space for a many-
body quantum system, meaning that the majority of quantum states for a many-body system
are too complex to be physically realisable [202]. The set of available unitaries that govern the
evolution form a continuum, allowing for a geometric interpretation of complexity, as a geodesic
path on the manifold of operators [203]. Operator complexity has gained much interest for its
role as an indicator of quantum chaos [204], probing topological phases of matter [205], and in
the holographic conjecture [206].

The exact operational definition of complexity in this case remains open. The circuit based
approach admits a geometric interpretation, but is difficult to compute [207]. Operator size, or the
number of contributing components (be it fundamental fields or basis elements) to the expansion
of the time evolved operator has been posited as a measure of complexity with motivation from
quantum circuits [208], many-body physics [209], and high-energy theory [206]. The operator
growth hypothesis (OGH) [204], which we shall introduce in more detail later, leverages the
Lanczos algorithm [210] to provide a measure of complexity for a system’s dynamics. It has
gained significant interest as a result of its close relationship to out-of-time-ordered correlators,
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autocorrelation functions, spectral functions, and as a probe of quantum chaos. For the latter,
it can provide false positives [211], and anti-correlations [212], perhaps indicating the need for a
stronger statement for the OGH. It also is limited in its scope, being restricted to time-independent
unitary evolution, and those governed by a Lindblad master equation.

We take motivation from both operator growth and Krylov complexity to define a probe
of quantum complexity that is more flexible in scope - the operator spread complexity. The
framework provided by operator spread complexity unifies both concepts of operator size and
Krylov complexity and exhibits the phenomena required of a complexity measure [213]. Crucially,
the spread complexity does not prescribe a particular basis, and therefore in principle any suitable
basis can capture the same qualitative complexity behaviour, with universal statements made
possible by a choice of basis that minimises the complexity measure. Remarkably, we show that
such a minimisation is done by the Lanczos algorithm, with the Krylov space (and its complement)
forming the minimal basis for the spread complexity. These results constitute the original work
found in Ref. [4], which was a collaboration between with several authors, with the analytical and
numerical work performed by myself and Anthony Kiely.

5.1 Quantum Chaos

In classical mechanics, chaos is typically considered synonymous to an exponential sensitivity of the
trajectories to initial conditions, characterised by the Lyapunov exponent. Specifically it quantifies
how rapidly two infinitesimally close trajectories in phase space diverge over time. In a chaotic
system, the separation between two points in phase space grows as δ(t) ≈ δ(0)eλt, where δ(0) is
the initial separation vector between the two points and λ is the Lyapunov exponent. We define
the Lyapunov exponent λ as

λ = lim
t→∞

lim
δ(0)→0

1
t

ln ∥δ(t)∥
∥δ(0)∥ , (5.1)

where ∥δ(t)∥ denotes the Euclidean norm of the separation vector. Many quantum systems exhibit
chaotic behavior in the classical limit, such as the quantum kicked rotor [214]. However, defining
quantum chaos in a dynamical way is significantly more difficult owing to the linearity of the
Schrödinger equation, and lack of defined trajectories [215]. A quick aside must be made about
integrable systems: a system described by the Hamiltonian HI (we treat the system as quantum,
but the same definition holds true with the appropriate classical equations of motion) is classified
as integrable if there are as many independent constants of motion, Ii as degrees of freedom

[HI , Ii] = 0, [Ii, Ij ] = 0. (5.2)

One may be tempted to describe quantum chaotic systems as all those which are non-integrable,
but non-integrable systems can still exhibit quasi-integrable or periodic behaviour [216]. Systems
with disorder are typically non-integrable, but can exhibit Anderson localisation [217], preventing
thermalisation.
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The major breakthrough for defining chaos in quantum systems originated in the development
of random matrix theory (RMT), independently by Wigner [218] and Dyson [219]. It was initially
developed in the context of nuclear physics to explain the spectra of atomic nuclei. In a small
energy window, and with a generic basis, the Hamiltonian of the complicated system will look like
a random matrix, where the entries are drawn from a Gaussian distribution. By taking ensembles
of random matrices with the relevant symmetries for the highly-structured system of interest, we
can gain insight into the statistical properties of their spectra instead of attempting to calculate
the eigenvalues exactly. Specifically, we study the level-spacing statistics, the distribution of
the difference between consecutive energy levels. The level-spacing statistics of RMT follow the
Wigner-Dyson distribution. For a spacing si between consecutive energy levels Ei and Ei+1, the
probability distribution P (s) for an RMT ensemble of 2x2 real symmetric matrices with time-
reversal symmetry is given by

P (s) = πs

2 exp
(
−πs

2

4

)
, (5.3)

where s is the spacing normalized to the mean level spacing. The above ensemble is known as
also known as the Gaussian Orthogonal Ensemble (GOE). Remarkably, the above distribution is
seen when plotting the level spacing histogram for various heavy nuclei [220].

Numerical studies of the level spacing statistics of quantum chaotic systems with classical
analogues showed that they also could be modelled by the Wigner-Dyson distribution. The con-
nection between quantum chaos and RMT was formalised in 1984 by a conjecture by Bohigas,
Giannonis, and Schmidt [214]. The BGS conjecture states that for a quantum system whose
classical analog is chaotic, the statistical properties of its energy levels are the same as those of
the eigenvalues of a random matrix from one of the standard ensembles. This conjecture has
been shown to hold true not only for the original class of systems that had a classical analogue,
but also for quantum chaotic systems that do not [221]. In addition, level-spacing statistics are
fundamentally linked with the ergodicity of a system, indicating whether or not the system obeys
the eigenstate thermalisation hypothesis (ETH) [222]. Many non-integrable quantum systems can
display complex dynamics and fast operator growth without displaying Wigner-Dyson level spacing
statistics [223, 224], pointing to a need for a probe of chaotic dynamics that is separate from a
probe of ergodicity. And while level spacing statistics can give much insight into the dynamics
of the system, it still does not give a quantitative measure of the complexity of the system or
particular initial conditions in the same way as the classical Lyapunov exponent.

Attempts to define a quantum analogue of the Lyapunov exponent lead to the development
of out-of-time-order correlation functions (OTOCs) [225]. We will first introduce the double
commutator

C(t) = ⟨[W (t), V ]†[W (t), V ]⟩. (5.4)

where W (t) = eiHtWe−iHt and W (0) and V have no mutual support in Hilbert space. This
quantity therefore starts at zero and saturates at C(t) = 2 if W (t) grows in support and no longer
commutes with V . The motivation for this quantity can be seen when taking W = x and V = p,
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the position and momentum observables, and then taking the semi-classical limit [225]

C(t) = ⟨[x(t), p]†[x(t), p]⟩ → (iℏ)2
( ∂x(t)
∂x(0)

)2
∼ e2λLt. (5.5)

The autocorrelation function of the commutator can be directly linked to the classical Lyapunov
exponent, and the exponential growth of it at short times is seen for quantum chaotic systems,
for generic choices of operators that initially commute. Eq. (5.1) can be rewritten as

C(t) = 2(1− Re⟨W (t)†V †W (t), V ⟩), (5.6)

where the object that we take the real part of is the out-of-time-ordered correlation function
(OTOC). This object exponentially decays from 1 to 0 for systems with fast growing entanglement
structures [225], however for systems with local interactions this decay will only be polynomial
in time [226]. The decay of an OTOC is an indicator of scrambling–the spread of initially local
information throughout a many-body system. While information scrambling intuitively resembles
classical chaos - information about the initial configuration of the system is rapidly lost - it is a
necessary but not sufficient condition for a system to be chaotic [227,228]. Subsequently, interest
in other dynamical signatures of chaos and information scrambling has grown, with much focus on
the behaviour of autocorrelation functions [229], the Loschmidt echo [230], the hydrodynamical
behaviour of many-body quantum systems [231–236], and the spread of support of both states
and operators [237–240].

Recent work has explored the competition and similarities of scrambling and decoherence, as
well as similarly finding a definition for quantum chaos for open systems [146, 240–247]. Deco-
herence is a channel for information from the system to leak into the environment, as opposed to
being spread into entanglement structures in a many-body system. The OTOC has been shown
to not distinguish between these two effects [241], meaning that other measures must be used in
the open system setting. Complex spacing ratios [248] and dissipative form factors [240,249] have
been developed to characterise the level repulsion for chaotic systems in non-Hermitian settings,
where the spectrum is no longer purely real. The operator growth hypothesis (OGH) [204] has
gained significance as a tractable method of calculating the complexity of a system and has placed
upper bounds on the Lyapunov exponent extracted from the OTOC. The OGH relies on being able
to find the Krylov subspace of an operator, and tracks the support of the time evolved operator in
this subspace. This subspace can be found for time-independent closed dynamics [204], dynamics
described by the Markovian GKSL master equation [250]. We will outline the operator growth
hypothesis as well as how these spaces are found for both cases.

5.2 Krylov Subspaces

The phenomena that the OGH leverages is the tendency for operators to grow support in Liouville
space as they evolve. To determine the growth rate, consider a system described by a Hamiltonian
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H, and an initially local Hermitian operator, denoted by |X0). The operator evolves under the
action of the superoperator L. The Maclaurin series expansion of the operator follows as |Xt) =
eiLt |X0) =

∑
n

(it)n

n! L
n |X0). In the closed case the superoperator is simply L• := [H, •] and

operators that do not correspond to a conserved quantity with respect to the Hamiltonian will
spread in support with repeated applications of this commutator. All of the information about
the evolution of the operator is therefore contained in the set {Ln |X0)}. It is advantageous
to transform this set into an orthonormal subspace of the overall Hilbert space. To do so, one
must first define an inner product between operators. We choose the standard Bogoliubov inner
products (also called the Kubo-Mori scalar product, or Duhamel two-point function) for inverse
temperature β

(A|B)gβ = 1
Z

∫ β

0
g(λ)Tr

(
e−βH(1−λ)A†eβHλB

)
dλ, (5.7)

where Z is the partition function of the system, and g(λ) is the metric to be defined. Different
choices of metric will induce different inner products. For instance, we could choose the Fisher
information metric,

g(λ) = δ(λ)− δ(λ− β)
2 , (5.8)

which gives the inner product

(A|B)FIβ = 1
2ZTr(e−βHA†B +A†e−βHB). (5.9)

Alternatively, we could pick the Wightmann inner product

g(λ) = δ(λ− β/2), (5.10)

which places operators |A) and |B) halfway along the thermal circle when taking the two point
function

(A|B)FIβ = 1
Z

Tr(e−βH/2A†e−βH/2B). (5.11)

This inner product is notable as it is the one chosen to derive the “bound on chaos” [251], which
places an upper bound on the Lyapunov exponent extracted from the OTOC

λL ≤
2π
β
. (5.12)

It is noted that the above bound is tied to the choice of metric for the inner product, other choices
can have inconsistent behaviour [204,252]. We will work at infinite temperature, taking β →∞,
removing the metric ambiguity.

Returning to the time evolved operator, we consider the case where its dynamics are generated
by the superoperator L := [H, ·]. With the specific choice of inner product, we can now employ the
Lanczos algorithm to orthogonalise the set {Ln |X0)}. This algorithm involves iteratively applying
the superoperator to the initial operator, normalising at each step with a Gram-Schmidt-like
process. Starting with |O0) := |X0) we then define |O1) := b−1

1 L |O0) where b1 := (O0L|LO0)1/2.
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The rest of the basis is then found iteratively

|An) := L |On−1)− bn−1 |On−2) ,

bn := (An|An)1/2 ,

|On) := b−1
n |An) .

(5.13)

From this we obtain an orthonormal set of operators - the Krylov basis {|On)}, and set of constants
- the Lanczos coefficients {bn}. The algorithm terminates when bn = 0 (or more accurately, to
some small numerical cut-off). The dimensionMK of the Krylov basis compared to the dimension
D of the Hilbert space is MK ≤ D2 − D + 1. In the Krylov basis, the superoperator takes a
tridiagonal form

Lnm := (On|L|Om) =



0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·
0 0 b3 0 . . .
... ... ... . . . . . .


. (5.14)

With this form of the superoperator, the operator “hops" to higher basis elements in the Krylov
chain over time, with higher-n elements having larger non-local support and complexity. For a
chaotic 2-local superoperator - say the tilted field Ising model, the Krylov operator |On) will
typically have support over n+1 sites. We can represent the time-evolved operator in Krylov basis
as

|O(t)) =
K∑
n=1

ψn(t) |On) . (5.15)

Knowing that typically the higher n basis elements in the Krylov “chain" are in general more
complex, a good indicator of complexity is to ask where the expected position of the operator on
the chain. This is the Krylov complexity

K(t) = 1
Z
∑
n

n|ψn(t)|2, (5.16)

where Z =
∑
n ∥ψn(t)∥2. Closer study of the Krylov complexity has given additional insight into

operator growth [253,254], deriving the conditions needed for a model to saturate an upper bound
on its rate of change. The Sachdev-Ye-Kitaev (SYK) model [204] is such a system, we will formally
introduce it later. The OGH itself focuses on the Lanczos coefficients. the OGH states that the
asymptotic growth of the Lanczos coefficients is maximal for chaotic systems. Specifically, this
is characterised by a linear rate, α > 0, such that bn = αn + γ where γ is a constant. The
growth rate, α, upper bounds the Lyapunov exponent obtained from the OTOC when the infinite
temperature inner product is taken

2α ≥ λL. (5.17)

The OGH has been successful in demonstrating the linear growth of Lanczos coefficients for chaotic
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systems, both analytically and numerically, for a number of models [255–258]. However, while
chaotic systems exhibit a linear growth in the Lanczos coefficients, unstable yet integrable systems
may do the same [211, 259]. Quantum chaos implies a linear growth in the Lanczos coefficients,
but the converse does not necessarily follow.

We can extend the framework of Krylov complexity case when the time evolution of an operator
X0 is governed by a Markovian GKSL master equation

dX0
dt

= iLX0,

= i[H,X0] +
∑
n

µn[±L†
nX0Ln −

1
2{L

†
nLn, X0}],

(5.18)

where “−” is taken when both the operator X0 and the jump operators Ln are fermionic [260] and
“ + ” otherwise. We again take the infinite-temperature inner product (A|B) := Tr

[
A†B

]
/Tr[1].

A variety of methods to create an orthonormal basis in this setting have been explored [250,260–
263]. We shall focus on the bi-Lanczos algorithm [250,264], which recovers the Lanczos algorithm
for zero decoherence. The bi-Lanczos algorithm evolves the left and right vectors of X0 separately,
enforcing orthonormality between elements of each set. We first fix b0 = c0 = 0, and then proceed
with the bi-Lanczos algorithm

|An) := (L − an−1) |On−1)− cn−1 |On−2) ,

|Bn) := (L† − a∗
n−1) |On−1)− bn−1 |On−2) ,

|On) := b−1
n |An) , ˜(On| = c−1

n (Bn| , with

an :=
(
Õn|L|On

)
, bn =

√
(An|An), cn =

√
(Bn|An)
bn

.

(5.19)

The algorithm terminates when bn=0 for finite systems or when successive Krylov basis elements
align. Again, both termination conditions involve a numerical tolerance. We therefore remark that
the dimension of the Krylov space calculated reflects the number of numerically relevant elements,
which may not be the exact dimension of Krylov space. We output two sets of vectors for which
we have the orthogonality relation

(
Õn|Om

)
= δnm, where we remark that each set by itself is not

necessarily orthogonal and in the bi-Lanczos basis the superoperator takes the tri-diagonal form

L =
∑
n,m

(
Õn|L|Om

)
|On) (Õm| =


a0 b1 0 · · ·
c1 a1 b2 · · ·
0 c2 a2 · · ·
... ... ... . . .

 . (5.20)

The superoperator is again analogous to the tight-binding chain. We note that the an coef-
ficients are purely imaginary, while the bn and cn are purely real. We can write the time-evolved
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operator in both spaces as

|Xt) =
∑
n=0

inϕn(t) |On) , (Xt| =
∑
n=0

(−i)nφ∗
n(t) ˜(On|. (5.21)

We can again write the Krylov complexity [250]

K(t) =
∑MK−1
n=0 nφ∗

n(t)ϕn(t)∑MK−1
n=0 φ∗

n(t)ϕn(t)
, (5.22)

where MK is the dimension of Krylov space. Due to the fact that the norm of the operator is not
preserved in time for open dynamics, we have to renormalise the populations. The Krylov basis
output by the bi-Lanczos algorithm is the minimal basis for describing the open dynamics of a
particular operator, making it the natural choice of basis from which to extract universal behaviour.
While the bi-Lanczos algorithm lets us probe operator complexity for dynamics generated by a
Markovian master equation, it remains to be seen how one can generate the Krylov basis for general
(potentially non-Markovian) open system dynamics, or even those for which the superoperator is
not accessible such as a collision model [265,266].

This provides the starting point of our work, in which we propose a tractable method for
characterising chaotic dynamics and operator complexity in quantum systems. In particular, we
introduce the operator spread entropy as a general notion for examining operator growth that
provides a measure of complexity as well as allowing for insights into the operator population
dynamics.

5.3 Spread Complexity

Consider a general orthonormal Hermitian operator basis G = {|Gn)}. The normalised overlap of
an operator, |Xt), at a time t with the nth element of this basis is

PG(n, t) = |(Gn|Xt)|2∑
m |(Gm|Xt)|2

. (5.23)

The population distribution of an operator can be used to study the onset of quantum chaos and
has been shown to be intrinsically related to the OTOC [267, 268]. It is explicitly applied to the
Krylov space for closed dynamics in Ref. [269]. To turn it into a measure of complexity we first
demand that |G0) = |X0).

The extent of the operator in a given basis [270] is given by the complexity (which can be
recognised as both the diversity [271] and perplexity [272] of a distribution)

CG(t) = eFG(t), (5.24)

where FG(t) = −
∑
n PG(n, t) lnPG(n, t) is the Shannon entropy for the operator distribution. For

t = 0 we have CG(0) = 1, which increases with time due to scrambling of the operator, ultimately
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saturating at long times if the operator is maximally spread over all available basis elements.
Two things must be noted about this measure: Firstly, we must choose a-priori a basis to

measure the spread of the system over. The inital operator must be a distinct element of the basis
- we assume it starts in a “low-complexity" configuration. Secondly, this measure distinguishes
average operator size and complexity. For instance, consider a spin chain system described using
a basis constructed from the strings of Pauli matrices. One could imagine a scenario where the
time evolved operator has full spatial support over the chain, but is nevertheless “simply” a linear
combination of a few strings of this maximal length. The spread complexity will be low in this
case, therefore reflecting its low complexity in the bulk of the spin chain. This can be the case for
certain Clifford circuits [273]. It is therefore relevant to consider whether other bases, aside from
the minimal one, capture operator dynamics accurately.

5.4 Minimisation of the spread complexity

To show that the Krylov basis minimises the operator spread complexity we will utilise a similar
approach as that given for the spread complexity of a state governed by the Schrödinger equation,
derived in [237]. We modify their starting point to that of the evolution of an operator governed by
a superoperator, with the only caveat being that we can obtain the Krylov space for the dynamics.
Taking k derivatives of eq. (5.23) gives

P
(k)
G (n, t) ≡ ∂kPG(n, t)

∂kt
(5.25)

=
∑k
j=0 i

k(−1)j
(k
j

)
(Xt| L†j |Gn) (Gn| Lk−j |Xt)
∥Xt∥2

+ (Xt|Gn) (Gn|Xt) ∂t∥Xt∥2

∥Xt∥4
,

where we recognise that for a complete basis we have

∑
n

|(Gn|Xt)|2 = ∥Xt∥2. (5.26)

Let us assume for both a general basis, G, and the Krylov basis {|On)} ∈ K that the first element,
i.e, n = 0, is X0, and that the following m − 1 elements are common to both. Therefore for
n < m, we have that

P
(k)
K (n, t) = P

(k)
G (n, t). (5.27)

We wish to isolate when the spread complexity differs between the two basis. We can take ad-
vantage of the orthogonality of the Krylov basis to show that a number of derivatives of the basis
populations disappear.
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Lemma 5.1 If the first m elements of G are those of K then P (k)
G (n, 0) = 0 for n ≥ m and

k < 2m.

Proof. We fist note that for all n > 0, the final term in eq. (5.25) is zero at t = 0 as
(Gn|X0) = δn,0. From eq. (5.25) we see that P (k)

G (n, 0) has at most k applications of the
superoperator to |X0). Taking k < m, it is clear that for n ≥ m we have (Gn| Lk |X0) =
(X0| L†k |Gn) = 0 as Lk |X0) requires at least k = m applications of L to generate overlap
with the first element of G that is not also a Krylov element, |Gm). For k < 2m, all of the
terms in the sum for P (k)

G (n, 0) will be zero as either (X0| L†j |Gn) or (Gn| Lk−j |X0) will
involve less than m applications of the superoperator to |X0), making it zero by the same
argument, proving the lemma. □

The spread complexity differs between the two cases when n ≥ m. We write the Shannon entropy
of the terms that differ from the Krylov basis as

Fn≥m(t) = −
∑
n≥m

PG(n, t) lnPG(n, t). (5.28)

We invoke the lemma to identify that the first non-zero term in the Taylor series expansion of
PG(n, t) around t = 0 occurs when k = 2m,

PG(n, t) =
∑
k

P
(k)
G (n, 0)tk

k!

=
P

(2m)
G (n, 0)t2m

(2m)! +O(t2m+1). (5.29)

We substitute in Eq. (5.29) into Eq. (5.4), and split the logarithm term into two separate parts

Fn≥m(t) = − ln(t)t2m

(2m− 1)!
∑
n≥m

P
(2m)
G (n, 0)−

∑
n≥m

P
(2m)
G (n, 0)t2m

(2m)! ln

P (2m)
G (n, 0)
(2m)!

 .(5.30)

The non-zero part of P (2m)
G (n, 0) can be written as

P
(2m)
G (n, 0) =

(
2m
m

)
(X0| L†m |Gn) (Gn| Lm |X0) , (5.31)

noting that ∥X0∥ = 1 and that the final term in Eq. (5.25) is zero for all n > 0. The non-zero
contribution here comes from |Y ), which is the part of Lm |X0) orthogonal to the first m basis
elements. We then write

∑
n≥m

P
(2m)
G (n, 0) =

∑
n≥m

(
2m
m

)
(Y |Gn) (Gn|Y ) . (5.32)
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As |Y ) is orthogonal to the first m elements of the basis, we can extend this sum to start at zero,
and invoke the completeness of G to write

∑
n≥m

P
(2m)
G (n, 0) =

(
2m
m

)
(Y |Y ) , (5.33)

which greatly simplifies the first part Eq. (5.30) into something that is basis independent. The
second term has the form f(x) = x

(2m)! ln x
(2m)! with x = P

(2m)
G (n, 0). This is a convex function

that is negative for the domain considered. P (2m)
G (n, 0) is a positive number for which the sequence

(αi) =
((2m

m

)
(Y |Y ) , 0, 0, ...0

)
trivially majorises any other sequence (βi) of positive numbers that

add to
(2m
m

)
(Y |Y ). This implies, by Karamata’s inequality [274], that ∑ f(αi) ≥

∑
f(βi), i.e.,

that the entropy (once we take the overall minus sign) is always greater than or equal to the
case where ∑n≥m P

(2m)
G (n, 0) has only contribution from a single basis element, meaning that

the Krylov basis element |Om) must be part of the basis to minimise this term, allowing us (by
induction) to conclude that the Krylov basis minimises the entropy for the population distribution
for both closed evolution and under dynamics generated by a Markovian master equation.

5.5 Sachdev-Ye-Kitaev Model

To demonstrate our framework, we analyse the SYK model, which consists of N interacting
Majorana fermions. This system is a paradigmatic model of quantum chaos [275]. Majorana
fermions, ψi, are defined through their anti-commutation relation {ψi, ψj} = δij and the dimension
of the Hilbert space of N Majorana fermions is 2N/2. The SYK model is an all-to-all coupled
model with the Hamiltonian

HSY K = (i)q/2 ∑
1≤i1<i2<...<iq≤N

Ji1i2...iqψi1ψi2 ...ψiq , (5.34)

where q denotes the number of fermions that interact in a vertex, q = 2 being an integrable free
fermion model, and q > 2 giving rise to chaotic behaviour. The sum is ordered in such a way as
to include interactions between any q fermions once, and the interaction strength is a real number
Ji1i2...iq drawn from a random Gaussian distribution with a zero mean and a variance

J2
i1i2...iq

= J2(q − 1)!
N q−1 , (5.35)

where the overline denotes the disorder average.
The SYK model is both a maximally chaotic model (viewed through the framework of the

operator growth hypothesis [204]) and a fast scrambler [276, 277]. Other models exhibit this
behaviour, such as random unitary circuits [276, 277]. Importantly, it saturates the bound on the
rate of change of Krylov complexity [253,254].

Recently the open-system dynamics of the SYK model has gained much attention [278–283].
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We consider a Markovian GKSL master equation for the SYK model as given by Eq. (5.18) with
the minus sign taken. The fermionic jump operators are Ln = √µψn where µ governs the strength
of the dissipation. We write it as L = LU + LD where

LU• = [HSY K , •], (5.36)

LD• = iµ
N∑
n=1

(
ψn • ψn + 1

4
{
1, •

})
, (5.37)

and we have used the anti-commutation relation of the Majorana operators and that they are
Hermitian.

As we shall discuss, the action of the dissipative part of the master equation leads to a
dampening of the Majorana string terms contributing to the time evolved operator at a rate
proportional to their size. We define a Majorana string Si of length si to be an operator formed
as a product of si Majorana fermions ordered such that the indices are in ascending order from
left to right, e.g., ψ1ψ3ψ7 is a string of length three. We will use the set of Majorana strings as an
orthonormal basis for the spread complexity of the SYK model. For the q= 4 SYK model under
dissipation, we only need half of the complete basis since only strings of Majorana fermions of odd
length can be generated by the interaction vertices provided the initial operator has odd length.
Unlike the Krylov basis for the SYK model, this basis is fixed and identical for each iteration for
the SYK model. As a basis it is physically well-motivated as it can be directly used to track the
size of operators [284].

5.6 Complexity vs decoherence

We will now analytically show the competition between decoherence and operator complexity for
the SYK Lindbladian. We assume an initial operator X0 =

∑
i piSi.

Considering the action of the non-unitary, decohering term on one of the strings for now, we
find

LDSi = iµ
N∑
n=1

ψnSiψn + iµ
N

2 Si. (5.38)

Now, we anti-commute the first ψn through Si which will allow us to then square it to 1/2. This
typically takes si anti-commutations to move it through, unless ψn appears in the string Si, in
which case it takes si − 1, leaving

LDSi = iµ

2
[
(−1)si(N − si) + (−1)si−1si +N

]
Si. (5.39)

Depending on whether si is odd or even, the right-hand side reads iµsiSi or iµ(N − si)Si
respectively. Once we apply the same process to each of the strings that appear in a linear
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combination to make X0, we obtain an operator that is co-linear with X0

LDX0 = iµ
∑
i

αipiSi, (5.40)

where αi = si or N − si depending on whether si is odd or even. Note that for our purposes, only
odd strings are relevant for the dynamics, meaning that the decoherence term dampens strings
at a rate proportional to their length. It is clear that the unitary part is the source of the new
operators appearing in the support of the time evolved operator to Majorana strings not originally
present in X0, as described in Ref. [284]. In the limit of strong decoherence, the Lindbladian does
not generate any new support from its action on the initial operator, so viewed through the lens
of the Lanczos algorithm, it terminates immediately, giving MK = 1.

This has similarities to Ref. [208], where the model of decoherence acts like a measurement
operator that is sensitive to the string length. The interplay between information scrambling and
decoherence interpolates between the closed case, where the system generates as much support
as is available to it, and the “Zeno-blocked” case where decoherence term is measuring the initial
string sufficiently strongly such that it does not grow in support. In the limit of strong decoherence,
the operator evolves as

Xt ≈
∑
i

pie
−µsitSi. (5.41)

Therefore, in the limit of strong decoherence, we see that any operator strings are eigenoperators
for the Lindbladian.

We next compare how the two bases–the Krylov basisK generated from applying the bi-Lanczos
algorithm and the Majorana string basis S [208, 284] capture the spread complexity. Clearly the
Krylov basis is the natural choice to examine universal behaviour and growth rates for systems.
However, the latter is arguably a more natural basis for understanding the dynamics explicitly in
terms of length of operator size. We fix

√
2ψ1 as the initial operator, but note in that the choice

of any Majorana operator of length one will reproduce qualitatively similar results.
Fig. 5.1(a) depicts the Krylov complexity for the open SYK model over 200 disorder realisations

for a range of dissipation strengths. We also show the closed case (topmost blue line), i.e.,
µ = 0, where the bi-Lanczos algorithm reduces to the regular Lanczos algorithm. We see that
initial growth in the closed case and under weak decoherence is similar, however they saturate at
different levels. This behaviour is consistent with the large-N behaviour of the SYK Lindbladian
model as established in [283], where the Krylov complexity is shown to plateau at smaller levels
for increasing dissipation strength. The saturation level of the Krylov complexity for a range of
decoherence strengths is shown in Fig. 5.1(b). Its decreasing value as the open system effects
become stronger indicates that information scrambles less throughout the system when subject
to decoherence and the dynamics become less “complex”. Why the complexity of the dynamics
is reduced under decoherence becomes clear when we plot the dimension of the Krylov basis
for the SYK Lindbladian vs decoherence strength in Fig. 5.1(c). The dimension of the Krylov
space corresponds to the number of elements needed to encode {Ln |X0)}. Even in the closed
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Figure 5.1: Dynamics for the open SYK model with N = 8 and 200 disorder realisations. Vari-
ance is shown as a shaded region (scaled to 20% of its value in panel (a) for clarity). (a) The
average Krylov complexity (eq. (5.22)) with µ/J = 0.0, 0.025, 0.05, 0.075, 0.1 corresponding to
blue, orange, green, red, and black, respectively. (b) The average Krylov complexity at Jt = 120
vs decoherence strength µ/J . (c) The average dimension of the Krylov space for the dynamics vs
µ/J .

case we see that the Lanczos algorithm compresses this information down into fewer basis states
than needed for the entire Hilbert space. As it becomes less likely for our operator to inhabit
regions of Krylov space with increasing decoherence strength, this set can be compressed down
further. The scaling of the complexity naturally corresponds to the scaling of the Krylov space.
This suggests a competition between information loss to the environment and the ability for a
system to scramble its information internally. Somewhat naturally, the cardinality of the Krylov
basis appears as the quantity to infer the scrambling nature of a system. For instance, we would
expect that for an integrable system, the effect of weak decoherence would serve to increase the
cardinality of the Krylov subspace as symmetries in the system are broken. We would still see the
complexity decrease for larger values of decoherence strength for the same reasons outlined for a
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Figure 5.2: Dynamics for the open SYK model with N = 8 and 200 disorder realisations with
µ/J = 0.0, 0.025, 0.05, 0.075, 0.1 corresponding to blue, orange, green, red, and black, respec-
tively. Variance is shown as a shaded region scaled to 20 % of its value for clarity. (a) Average
spread complexity eq. (5.24) in the Krylov basis. (b) Average spread complexity in the string
basis.

non-integrable system.
While the cardinality gives us an insight into the competition between scrambling and deco-

herence, only the complexity is a genuinely dynamical quantity from which scrambling times and
growth rates can be derived. Hence, we plot the operator spread complexity Eq. (5.24) vs time
in Fig. 5.2. Both the Krylov and string bases show the same hierarchy in spread complexity for
different decoherence strengths. The rapid early growth of spread complexity in the string basis
case comes from the inherent non-local nature of the SYK model. A few applications of the
superoperator is all that is needed to have contributions from all strings in the basis. We postulate
that for a local model, the qualitative growth of the spread complexity in both the Krylov and
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(Majorana or Pauli) string bases should be closer. This opens the door to moving past Markovian
dynamics, allowing to assess whether information back flow into the system has a potential com-
peting effect alongside decoherence and internal scrambling. Maps that generate dynamics with
information back flow, even if they can be written in a master equation form, are not amenable
to the bi-Lanczos approach. A pre-chosen basis, such as the string basis, removes this roadblock.
Since this basis still allows to accurately capture the correct qualitative behavior as evidenced from
Fig. 5.2, it therefore allows one to study the operator complexity in more general settings.

5.7 Conclusions

We have explored competition between information scrambling within a system and information
leakage to the environment as described by a Markovian master equation. We demonstrated
that the Krylov basis, constructed via the bi-Lanczos algorithm, minimises the spread complexity
and showed that qualitatively consistent operator dynamics can be captured by considering other
suitable bases. Regardless of the specific choice of basis, we established that decoherence caps
the size of operators, consistent with earlier results in the thermodynamic limit [285]. Typically
decoherence is seen as a sink for quantum information from a system. While interactions with
an environment does cause this to happen, it also has an effect on the information dynamics
within the system itself. For the channel considered, we saw how it skews the operator population
distribution to shorter lengths, preventing the proliferation of many-body entanglement within the
system. A systematic review of the effect of other quantum channels on the operator population
distribution would be of interest. Additionally, throughout this thesis we have typically viewed
the environment as a one-way carrier for quantum information, extracting it from the system -
with the one exception being the accessible environmental fragments in Chapter 4. Allowing the
environment to have a memory of the earlier state of the system may reveal interesting phenomena
relevant for both information scrambling and quantum Darwinism. Our results demonstrate that
a basis other than the minimal one can still provide insight into the spread complexity of operator
dynamics, opening the possibility to explore the effect of the backflow of information on the
competition between scrambling and decoherence. A natural framework for these is using master
equations with time-dependent rates [2] or collision models with non-zero Markov order. The
primary limitation for the study of information scrambling and quantum chaos in general is that
numerical studies in the literature are limited to few-body systems, where finite-size effects become
relevant quickly. The operator growth hypothesis itself is a statement about asymptotic growth
of the Lanczos coefficients. Extracting enough Lanczos coefficients to meaningfully define a
growth rate relies on finding models that can be solved efficiently numerically, such as the LMG
model [211], or ones that admit analytical treatment in the thermodynamic limit [286]. The latter
offer an interesting framework for exploring non-Markovianity and finite temperature effects in
a tractable manner, potentially by analytically deriving the autocorrelation function of the same
system as was considered in [286] and probing the high-frequency response of its spectral function.
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Chapter 6

Conclusions and Outlook

The central thread of this thesis is the exploration of information dynamics in quantum systems.
We have examined scenarios where ideal coherent dynamics are achieved through control, as well
as phenomena arising from uncontrolled dynamics where the system is allowed to decohere. By
examining the interplay between coherence, control, and the influence of environmental degrees of
freedom, this work provides a broad perspective for understanding and leveraging these dynamics
in a variety of quantum settings. The disparate topics covered - ranging from counterdiabatic
control and gate implementation to the emergence of classical objectivity and operator complexity
— are unified by a central inquiry into the dynamics of quantum information.

Quantum systems naturally exhibit complex dynamics. The tensor product structure of Hilbert
space creates an exponentially vast state space, making it challenging to store and simulate
such systems on classical computers as the size of the system increases. This motivates the
use of quantum devices that can, in principle, simulate the systems of interest. Remarkably,
the complexity of quantum information dynamics not only permits simulation but also enables
efficient algorithms for solving classical problems. While large-scale, fully-programmable, fault-
tolerant quantum computers remain decades away, current quantum technologies developed en
route to this goal have significant practical potential. However, the transformation of quantum
theory into practical technology relies on quantum control. We explored quantum control for the
purpose of engineering coherent dynamics in Chapter 2 and Chapter 3. In the former we proposed
a novel protocol for counterdiabatic control in critical systems, while in the latter we leveraged a
number of control protocols for the implementation of quantum gates. Both works emphasised the
energetic cost of control, highlighting resource efficiency as a critical issue for scalable quantum
information processing.

From the viewpoint of quantum control, decoherence and the environment at large are viewed
as deleterious sinks for quantum information. Quantum information in general tries to maximise its
support in Hilbert space, a phenomenon that underpins thermalisation in closed quantum settings.
What was once local quantum information is hidden in highly complex many-body and long-range
correlations. This is generic for typical interactions, and typically leaves the reduced state of a
subsystem in a classical mixture resembling a Gibbs state. However, the world is not a cold,
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thermalised place (yet). Careful treatment of what is typically traced out or something that places
bounds on timescales for “interesting” dynamics can instead give insights into the emergence
of the classical world. We discussed this treatment, Quantum Darwinism, in Chapter 4. With
the right choice of interactions between the system and the environment, we see that as quantum
information propagates from the system it will leave in its wake a rich correlation structure between
the system and environment that allows the latter to view the former in a classically objective
manner. Our work in Chapter 4 asks an uncomfortable question of Quantum Darwinism. If the
system couples to multiple environmental fragments with non-commuting interaction Hamiltonians
then we can no longer define a pointer basis for the system, and Darwinism is suppressed. This
can be circumvented by demanding a separation of timescales, that one environmental channel is
stronger than the other. This allowed us to approximately define an effective pointer basis and
see the signatures of classical objectivity transitively, before the other interaction term becomes
relevant and thermalises the system. Our results would imply that the strongest interactions
between classical objects and the information medium should be purely dephasing in the same
basis, that is that there should be a dominant interaction axis. How finely-tuned this solution is
remains the subject of further work.

The environment is not the only sink for local quantum information. Closed many-body
quantum systems scramble quantum information. Any information about the configuration of the
system at a point in time will be lost to many-body correlations within the system. Accessible
degrees of freedom as sinks for quantum information through residual interactions has already
received much attention as a potential roadblock to the scalability of quantum devices [287].
The interplay between these two competing sinks for quantum information can give rise to rich
phenomena. We saw in Chapter 5 that decoherence does not simply cause information to leak
out of the system, but fundamentally restructures the information that remains there. Typically,
decoherence lowers the complexity of the many-body correlations internal to the system, biasing
information to few-body correlations. However, the system-environment relationship does not
have to be a one-way sink for information, non-Markovian dynamics can allow for information
backflow into the system. What this implies for the internal information structure remains a topic
for further study.

Throughout this thesis we have explored both the dynamics of controlled quantum systems
and the dynamics of many-body systems (the latter typically in an open system setting). While
the two topics are seemingly disparate, we wish to highlight that in recent times tools from the
former have started to be applied to the problem of classifying and probing many-body dynamics.
We refer again to the adiabatic gauge potential (AGP), introduced in Chapter 1,

⟨m(λ)|Aλ |n(λ)⟩ = i ⟨m(λ)| ∂λH0(λ) |n(λ)⟩
En(λ)− Em(λ) , ∀m ̸= n. (6.1)

The AGP is typically employed for quantum control, as demonstrated in Chapters 2 and 3. How-
ever, the AGP has been used to explore quantum speed limits [41] and recover critical scaling
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exponents [288]. The AGP clearly encodes information about the spectrum of the system and the
evolution of eigenstates, as well as information about non-equilibrium phenomena it is typically
used to suppress. Surprising connections with other areas of quantum physics can be made. The
rate of change of a state as a parameter (in this case λ) is changed for an eigenstate |n⟩, known
as the fidelity susceptibility, is given by

χ
(n)
λ = ⟨∂λn|∂λn⟩ − ⟨∂λn|n⟩⟨n|∂λn⟩. (6.2)

We recall that the AGP is the generator of eigenstate evolution, which allows us to neatly recast
the fidelity susceptibility as the variance of the AGP,

χ
(n)
λ = ⟨n|A2

λ|n⟩ − ⟨n|Aλ|n⟩2. (6.3)

If we average the fidelity susceptibility evenly over all eigenstates we find that the total fidelity
susceptibilty is nothing but the Frobenius norm of the AGP - something we characterised as the
cost of control

χλ =
∑
n

χ
(n)
λ 1 = ||Aλ||2 =

∑
n

∑
m̸=n

| ⟨m|Aλ |n⟩ |2

(En − Em)2 . (6.4)

The scaling of the cost of control has been shown to be a sensitive probe of quantum chaos
[223,224], scaling exponentially with system size for chaotic systems and scaling polynomially with
system size for integrable ones. Most remarkably, exponential scaling of the AGP norm is seen for
systems with very weakly broken integrability, where the corresponding level spacing statistics are
closer to Poissonian than Wigner-Dyson. This approach therefore separates chaos from ergodicity,
the latter characterised by level-spacing statistics, and the former by exponential sensitivity of
eigenstate perturbations. Further work exploring integrability breaking and the transition to ergodic
dynamics with these methods may be fruitful, perhaps by splitting contributions to the AGP norm
by eigenstate and probing the statistics found. In the same spirit, we can use the tools from
controlled closed quantum systems to probe open many-body quantum systems. An analogue
of the AGP for open systems can be derived in a similar fashion to that for unitary dynamics
[289]. While control and adiabatic dynamics in non-Hermitian settings has been explored before
[289–291], insights from the AGP and its norm in this setting have the potential to define steady-
state complexity (something we probed before using the cardinality of the Krylov subspace for a
given dissipation strength in Chapter 5), to diagnose and characterise dissipative phase transitions
(analogously to how the fidelity susceptibility is typically used for quantum phase transitions), and
to characterise non-equilibrium effects in driven open systems through the cost of using the AGP
to enforce transitionless dynamics. This potential outlook is quite exciting, as it uniquely blends
the topics discussed in this thesis and reinforces a saying of my advisor that “you learn a lot about
a quantum system from what it takes to control it.”
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