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(ξ(1), ξ(2)) corresponding to state of the DQD that feedback regions represent and
the arrows show the desired direction of cycle of the control parameters. . . . . . 93

4.3 Detector is lagging behind the quantum state. The figure above shows the evo-
lution of the feedback variable and instantaneous expectation value of the ob-
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Chapter 1: Introduction and background

1.1 Chapter overview

Sec. 1.2 presents a historical overview of Maxwell’s demon and the field of information

thermodynamics. Sec. 1.3 presents the organization of the thesis, summary of theoretical tools

and a thematic overview of the thesis. Sec. 1.4 summarizes the remaining chapters.

1.2 Historical overview of Maxwell’s demon

1.2.1 Maxwell’s thought experiment and Szilard’s engine

In a thought experiment described in 1867, Maxwell presented the idea that the second

law of thermodynamics can be violated by manipulating a system at the microscopic level. This

thought experiment involves a gas of molecules in a rigid, closed container with adiabatic walls.

This gas starts in thermal equilibrium. There is a partition in the middle of the container, which

splits the system into subsystems A and B as shown in Figure 1.1. The partition contains a

trapdoor that allows only one molecule to pass from one side to another at a given time. Now

we imagine that there exists a small intelligent being who is able to observe the motion of each

molecule and provide feedback control on the trapdoor based on its observations. This intelligent

being, or “demon”, observes the molecules that are going to hit the trapdoor in the each of the
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Figure 1.1: A schematic depiction of the original Maxwell’s demon thought experiment. Initially
both subsystemsA andB are in thermal equilibrium. The demon creates a temperature difference
between the subsystem by observing the system and providing feedback accordingly.

subsystems and controls the trapdoor based on the following rules:

(i) if a molecule of subsystem A approaches the trapdoor then it will be allowed to pass to

subsystem B only if its kinetic energy is higher than the average kinetic energy of the molecules

of subsystem B at that instant of time.

(ii) If a molecule of subsystem B approaches the trapdoor then it will be allowed to pass to

subsystemA only if its kinetic is lower than the average kinetic of the molecules of the subsystem

A at that instant of time.

If the demon implements these rules, then with time the average kinetic energy of molecules in

subsystem A decreases and the average kinetic energy of molecules in subsystem B increases.
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Thus, even though we started in a situation where subsystemsA andB had the same temperature,

due to the microscopic manipulation of the system by the demon, subsystem A will have lower

temperature than that of subsystem B after some time. In other words the demon has driven the

system from a state with a uniform temperature to a state with a temperature difference without

doing any work, which is a violation of the second law of thermodynamics.

A number of different versions of Maxwell’s demon have been introduced since Maxwell’s

thought experiment [5]. Among these, an important model is the “Szilard engine” presented

by Leo Szilard in 1929, which is relatively simple to analyse and highlights a deep connection

between information processing and thermodynamics [6]. In this engine, the system is a single-

molecule gas in a container with pistons on both ends (see Fig. 1.2). A thin partition can be

inserted frictionlessly in the middle of the container, The process begins without the partition,

and the container is placed in contact with a heat bath with temperature T . Then the partition is

inserted into the container. Now a “demon” measures the location of the molecule with respect to

the partition, i.e. whether it is to the left or to the right of the partition. The demon then slides the

piston that is opposite the location of the particle to the partition and attaches a frictionless pulley

system where a small mass is lifted when the piston moves towards its original location. For

example, the mass is lifted when the piston moves towards the right if the molecule was located

on the left side of the partition as can be seen in Fig. 1.2. The partition is removed to allow the

single molecule gas to expand. Whenever the molecule hits the piston, it transfers some of its

kinetic energy to the piston and this energy in turn gets converted to potential energy of the mass

that is being lifted against gravity. Thus the system performs work by lifting the mass. The loss

in the kinetic energy of the molecule is compensated as it absorbs heat from the bath throughout

the process. If the lifting of the mass and the motion of the piston happens quasi-statically, then
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(a) Schematic of Szilard’s engine

? ?
measurement

feedback

(b) Protocol of Szilard’s engine

Figure 1.2: The figure above shows a schematic depiction of the Szilard’s engine and the figure
below shows its operation protocol. Depending on the result of the measurement the demon
provides two different feedback protocols to extract work out of the system.
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the maximum amount of work is extracted from the system. When the piston hits the other side

of the wall, the system gets restored to its initial state completing the cycle. In this cycle, if

performed quasi-statically the heat from a single thermal reservoir is converted to work without

any loss. Thus like Maxwell’s original thought experiment, this model also exhibits a seemingly

violation of the second law of thermodynamics.

In both Maxwell’s and Szilard’s thought experiments the information gathered by measure-

ment is what allows the demon seemingly to violate the 2nd Law. In Szilard’s engine, the link

is particularly clear. By measuring whether the molecule is located to the left or the right of the

partition, the demon gathers 1 bit of information (equivalent to answering a yes/no question). The

demon uses this information to push the piston and attach the pulley accordingly in such a way

that work is extracted work over the cycle. Thus heat is converted to work by acquiring 1 bit of

information about the system per cycle, and the amount of heat that gets converted to work is

Wext = kBT

∫ Vf

Vi

dV

V

= kBT ln 2

(1.1)

where kB is the Boltzmann’s constant, T is the temperature of the heat bath, Vi(Vf ) is the ini-

tial(final) volume of the container with Vf = 2Vi. This calculation of the work is done using the

ideal gas formula for the single molecule gas. See Ref. [7] for a discussion on Szilard engine

with an ensemble picture. Experimental realizations of Szilard engines have also been performed

using single electrons, confirming the extraction of kBT ln 2 of work for 1 bit of information [8].
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1.2.2 Landauer’s principle and Bennett’s exorcism

In this section we discuss Landauer’s principle, which connects information processing

with thermodynamics. Landauer’s principle can be summarised as follows: any logically ir-

reversible step in a computational process must be associated with with dissipation of heat

[9][10][11]. The idea of logical irreversibility for an operation implies that it is impossible to

reconstruct the logical state of the input from just the logical state of the output, thus the inverse

of the operation does not exist. For example, consider a bit erasure operation that always converts

the input bit to 0. The output bit 0 can be obtained from two inputs {0, 1} and thus the inverse of

this operation does not exist. This is an example of a many-to-one mapping. Information about

the input is destroyed in these operations.

The memory device on which computation is performed is a physical object and on a classi-

cal level it is governed by Hamilton’s equations of motion, under the assumption that the external

environment and the memory device together form an isolated system. A many-to-one mapping

for the logical state of the memory device is always associated with the contraction of phase

space volume of the device. From Liouville’s theorem, we know that phase space volume is con-

served for the entire system under Hamiltonian dynamics. Thus, contraction in phase space in the

memory device must be compensated by the increase of the phase space volume in the external

environment. When an erasure operation takes place, both the phase space volume corresponding

to 0 and 1 state is contracted to a single state (say 0) in the memory device which means the phase

space volume in the memory device is contracted to the half of its original volume ( Γ0). For an

isolated system the phase space volume is directly proportional to the available microstates of the

system. Thus reduction of the phase space volume is associated with the reduction of the entropy
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in the system. This phase space volume contraction in the system or the entropy reduction in the

system is compensated in the external environment as dissipation of heat at least of the amount

kBT ln Γ0

Γ0/2
= kBT ln 2. Here we have assumed that the external environment is a heat bath at

temperature T . The value kBT ln 2 is the minimum amount of heat that needs to be dissipated

for the erasure of 1 bit of information. It has been argued that even though erasure is a logically

irreversible operation, it can be done in thermodynamically reversible fashion with arbitrarily low

dissipation for the execution of the protocol [12]. There have been a number of recent experi-

mental studies on the verification of Landauer’s principle, such as those of in Refs. [13, 14].

Charles Bennett used Landauer’s principle to propose an explanation of Szilard engine

[12]. The key idea is that the demon should be considered as a physical device and we need

to take account of the demon’s memory state, along with the states of the single molecule gas.

Imagine the demon has a memory storage where it can store the information about the relative

location of the gas molecule in the container with respect to the partition. The memory register

of the demon can take up three distinct states. It has a state S which is the default state of the

memory register and two other states L and R correspond to the relative location of the gas

molecule (left and right) with respect to the partition. Now let us reinspect the Szilard’s engine

while accounting for the changes in the memory states of the demon. At the start of the cycle the

demon is in state S, and the gas molecule can be on either the A or B side of the container with

equal probability. Hence the initial statistical state of the composite system (gas molecule and

demon’s memory) can be described by saying that the system can be in the state AS or the state

BS with equal probability. The protocol for the operation of Szilard engine and the change in

the demon’s memory is schematically depicted in the Fig. 1.3. Now the partition is inserted, and

the demon measures about the location of the gas molecule. If the molecule is on the left side of
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BSAS
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Figure 1.3: A schematic depiction of Bennett’s analysis of the operation cycle of Szilard’s engine
with the memory register. Possible combined states of the engine and demon memory are shown
in the table in the right upper corner. The first letter of the two letter description of the state
denotes the state of the particle in gas container {A,B} and the second letter shows the state of
the demon memory {S, L,R}. The state of the register in each step is shown in a circle above
the container pictures. The description of the statistical state of the overall system is depicted
by shading state diagrams. Shaded boxes correspond to the possible state of the overall system.
Note that another additional erasure step is required to take the full system to its initial condition.
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the partition then the demon’s register switches to state L and if the molecule is on the right side

of the partition then the demon’s register switches to state R, thus this act of observation leads to

two mutually exclusive outcomes AL and BR. This switching of the memory state based on the

state of the gas is an example of information copying (the memory state of the demon becomes

correlated with the state of the system). It can be shown that copying operations can be done in

a reversible manner with arbitrarily small energy cost [12]. Now depending on the outcome, the

proper protocol is followed to insert and push the piston to extract work from the system (see

Fig. 1.2). After the work extraction is done and the partition is reinserted again, the particle can

be on either side of the partition and thus both A and B states equally likely. Clearly, after this

step, both for the left-side protocol and right-side protocol the gas and is back to its initial state

where A and B has equal probability. However, if we look into the composite system then we

see the overall system has not returned to its initial statistical state. Now, for the case of left-

side protocol the demon memory is in the state L and for the case of right side protocol the the

demon memory is in the state R whereas in the initial state of the memory was state S. In this

configuration the demon is retaining the memory of the result of the measurement operation, and

to reset the memory to the original state state S this information needs to be erased, which is a

logically irreversible operation. Thus, to restore the overall system to its initial state, the memory

of the register is set to S both for the left side protocol and right side protocol and this erasure

operation is associated with the dissipation of minimum kBT ln 2 amount of heat in the reservoir.

Once we take account of this heat exchange associated with the erasure step, this heat exchange

can compensate for the decrease in entropy associated with the conversion of heat to work. Thus

overall the second law of thermodynamics is not violated when we consider the effect of the

information processing inside the demon.

9



WorkSystem

Heat Bath

0 0 0 0 0 0 0 0 1 1 0 1 0
Information Reservoir

Figure 1.4: A schematic diagram of information engine that illustrates how empty information
reservoir can act as a thermodynamic resource. Here the system extracts heat from a bath and
directly converts it work, at the cost of randomizing the information reservoir which is depicted
as a memory tape.

1.2.3 Information as a thermodynamic resource

This idea of taking the memory of the demon into consideration automatically leads to the

idea of an information reservoir. Instead of doing the reset of the memory of the demon in the last

step of the cycle we could have replaced the memory register of the demon with a new register

which is initialized at S. This way the state of the composite system of demon and gas container

is back to its initial state without dissipation of heat for the erasure process, but we end up with

an additional memory register that contains information about the result of the observation step

(the register is in the L or R state). Clearly, if we do this we are able to complete the cycle at the

cost of randomizing the memory register from S to L or R, that is by writing information to the
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register.

Now we consider a similar situation where we have a memory tape containing N bits (two

state memory register) with every bit initialized at the blank state 0, then we will be able to run the

cycle N times at the cost of randomizing the memory tape by writing down the data to it. Clearly

like a heat or work reservoir (mass-pulley) this memory tape is also acting as a thermodynamic

resource where randomizing the tape allows us to convert heat directly to work from a single

thermal reservoir. Such memory tapes are examples of an information reservoir [15, 16]. The

empty information reservoir is a thermodynamic resource, which can be used to rectify thermal

fluctuations from a heat bath to work, at the cost of randomization of information reservoir. This

randomization of the information reservoir corresponds to the recording of information about

system (see Fig. 1.4 for a schematic diagram of an information engine).

1.2.4 A physical picture of information reservoirs

So far we have used this information reservoir in an abstract sense, but as pointed out in

the discussion about Landauer’s principle the memory register (or the memory tape) is a physical

memory storage device. In this section, we clarify the connection between logical state of the in-

formation reservoir and the microscopic state of the underlying physical device, using a classical

Hamiltonian approach following Ref. [17]. We consider the case where the information reservoir

consists of N bits and is connected to a thermal bath. We model the information reservoir as a

many-particle classical system containing K particles. The exact description of the positions and

momentum of all particles together represent classical microstate (ψ) of the information reser-

voir. This microstate ψ can be described as single point in the 6K dimensional phase space. We
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assume that for the time scale under consideration, the ergodicity of the phase space of the reser-

voir is broken and it is split up into 2N separate ergodic regions. Thermal transitions between

these ergodic regions are almost negligible in the considered time scale due to large free-energy

barriers. Each of these ergodic region corresponds to a logical state or informational state (σ) of

the reservoir and can be described by a sequence of bits (e.g. 0110...00100) containing one of the

possible 2N combinations of N bits. We can construct a function σ̂ : {ψ} → {σ} that partitions

the whole phase space into different regions corresponding to different logical states. The logical

states of the information reservoir acts as the information bearing degrees of freedom (IBD) [18]

which are relevant for the information processing. Under each logical state there are multiple

microstates {ψ} that corresponding to the non-information bearing degrees of freedom (NBD)

which are not directly relevant for the information processing. The Hamiltonian for the isolated

reservoir is Hinfo(ψ). We assume that under constrained thermal equilibrium with the heat bath,

the information reservoir exists in the logical state σ. We define the constrained equilibrium

distribution of the microstates (ψ) under this logical state (σ) as

peq(ψ|σ) = δσ,σ̂(ψ)
e−βHinfo(ψ)

Zσ
(1.2)

where β = 1
kBT

and Zσ is a normalization constant defined by
∫
dψ peq(ψ|σ) = 1. The Shannon

entropy S corresponding to a phase space distribution ϕ(ψ) is defined as

S[ϕ] = −
∫

dψ ϕ(ψ) lnϕ(ψ) (1.3)
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(Note that we have used natural logarithm in Eq. (1.3) for convenience instead of more common

logarithm of base 2). Using these definitions, we write down the expression for the equilibrium

entropy of the distribution of the microstates conditioned on the the logical state of the informa-

tion reservoir as

Seq
σ = −

∫
dψ peq(ψ|σ) ln peq(ψ|σ). (1.4)

Similarly we write down the average equilibrium energy as

⟨Hinfo(ψ)⟩eqσ =

∫
dψ peq(ψ|σ)Hinfo(ψ). (1.5)

We assume that (i) the NBDs of the information reservoir reach their constrained thermal equi-

librium peq(ψ|σ) very rapidly compared to the time scales of our interest over which any change

in σ takes place, and (ii) the average energy and entropy corresponding to all the possible logical

states of the reservoir are equal when at thermal equilibrium, i.e., ⟨Hinfo(ψ)⟩eqσ = ⟨Hinfo(ψ)⟩eqσ′

and Seq
σ = Seq

σ′ for any σ and σ′. The assumption (i) implies that for all practical purposes the

NBDs of the information reservoir always remain in thermal equilibrium when connected to an

additional system of interest. If the additional system of interest takes the information reservoir

from one logical state to the another, the equality of average energy criteria in assumption (ii)

implies the change in logical state of the information reservoir does not have any energetic cost.

The equality of the entropy of each logical state in the assumption (ii) leads to the conclusion that

under any transformation of the IBDs the entropy change due to the NBDs can be neglected.

At any time t the full statistical description of microscopic state of the reservoir is given by

pt(ψ) and it can be related to the conditional distribution of microstates under given logical states
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as pt(ψ) =
∑

σ p̄t(σ)pt(ψ|σ) where p̄t(σ) is distribution of the logical states of the reservoir and

pt(ψ|σ) is the conditional distribution of ψ given microstate t. Using this relation and assump-

tions (i) and (ii) , it is possible to show that at any time t, the total entropy of the information

reservoir SIR(t) = −
∫
dψpt(ψ) ln pt(ψ) can be split into two parts

SIR(t) = SIBD(t) +
∑
σ

p̄t(σ)Seq
σ , (1.6)

where SIBD(t) = −
∑

σ p̄t(σ) ln p̄t(σ) (see Ref. [17] for details). Here SIBD is the Shannon

entropy associated with the logical states (σ). The other part of the contribution to the entropy

comes from the conditional distribution of the microstates given the logical state of the reser-

voir. As we have assumed the conditional distribution of the microstates given the logical state

thermalizes very rapidly and Seq
σ = Seq

σ′ , we see that the change in the Shannon entropy of the in-

formation reservoir for a protocol comes almost exclusively from the information bearing degrees

of freedom, and in this limit we have

∆SIR = ∆SIBD. (1.7)

Thus, the change in Shannon entropy of the distribution of logical states of the information reser-

voir is equal to the change in Shannon entropy of the memory storage device. This justifies the

abstraction of a physical memory-storage device as a memory tape (information reservoir).
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1.2.5 Autonomous and non-autonomous models of Maxwell’s demons

In Maxwell’s original thought experiment and the Szilard engine, an external agent (the

demon) makes measurements on the system and provides feedback accordingly, to seemingly

violate the second law of thermodynamics. In these models we exclude the details of physical

nature of the agent from our consideration and only focus on the system that is being manipulated.

These models of the Maxwell’s demon fall into the paradigm of non-autonomous demons.

Alternatively, one can ask whether it is possible to replace the agent with a purely mechan-

ical contraption or a physical gadget that is programmed to apply a control protocol to rectify

thermal fluctuation to extractable work. We call this paradigm the autonomous demon [18].

Smoluchowski’s trapdoor [19, 20, 21] and Feynman’s ratchet-and-pawl [22, 23] are attempts to

design such autonomous gadgets for the rectification of the thermal fluctuations to work. How-

ever, a close inspection on these models shows that they cannot cause a violation of the second

law. For example, Feynman in his ratchet-and-pawl analysis showed that if both the thermal

baths are set at the same temperature the ratchet-pawl contraption will also be affected by ther-

mal fluctuations making it ineffective for rectification of heat to work [22]. Current consensus

in the scientific community is that such mechanical feedback control system by itself cannot op-

erate so as to convert heat directly to work without any dissipation. However, from Bennett’s

analysis, we can see that it may be possible to construct an autonomous systems that can convert

heat to work without dissipation but only with the inclusion of an information reservoir in the

model. Bennett argued that it is possible to convert heat from a single thermal reservoir directly

to work using a mechanical device in a cyclic process, but the decrease in entropy due to this

process must be compensated by randomizing the logical states of information reservoir which
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initially existed in a low entropy state [12]. The construction of such a device is based on the idea

of the physical nature of the information as suggested by Landauer [10]. Thus we can think of

an autonomous version of Maxwell’s demon where a device and an information reservoir are in

contact with a heat bath, and the device extracts heat from the heat bath and converts it directly

to work in a cyclic process, while writing information about its physical states in the information

reservoir. We will refer this class of autonomous Maxwell’s demons as memory tape models or

information ratchets as they convert heat to work at the cost of writing information to a memory

storage device. (see Fig. 1.4)

A stochastic model of such an autonomous Maxwell’s demon was proposed by Mandal and

Jarzynski (MJ) [15]. The MJ model involves a system which has three states with equal energy,

a pulley system with a mass, and a sliding memory tape containing N bits. The entire setup is

immersed at a heat bath. The information reservoir, the pulley system and the system are coupled

to each other in such a way that each bit of the memory tape interacts with the system for a fixed

amount of time and then it is replaced with the next bit in the memory tape. It was shown that

for proper sets of parameters this system can extract heat from the thermal reservoir to raise the

mass against gravity in the pulley at the cost of writing information to the memory tape.

1.2.6 Information thermodynamics - a transdisciplinary field

Models similar to the MJ model have been developed for both classical and quantum sys-

tems [16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. The computational and

information-theoretic aspects of memory tape autonomous demons have also been explored in

Refs. [39, 40, 41, 42, 43, 44, 45, 46, 47]. Over the last three decades, the field of stochastic
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thermodynamics [48, 49] has emerged as a key area of research in the mesoscopic physics where

fluctuations are prevalent. Investigations of models of Maxwell’s demons have led to a better un-

derstanding of the connection between information theory and statistical physics and discovery

of several fluctuation relations concerning feedback-controlled systems [49, 50, 51, 52, 53, 54,

55, 56, 57, 58]. These studies now have emerged as sub-field of information thermodynamics and

also have lead to several experiments [5, 48, 59]. The design and implementation of these models

of Maxwell’s demons or information engines also require efficient engineering of mesoscopic

systems which connects information thermodynamics to the fields of nanotechnology, chemistry,

control systems and quantum technology. [60, 61, 62, 63, 64].

1.3 Organization and thematic overview of the thesis

1.3.1 From feedback-controlled systems to non-feedback systems

A key theme of this thesis is the investigation of the time evolution of the statistical state

of a system when some form of control is applied to it. The chapters in the thesis are arranged

such that we start our discussion with closed-loop or feedback-controlled systems and progress

towards open-loop or non-feedback systems [62]. Chapters 2, 3 and 4 deal with closed-loop

systems where we have an agent performing measurement-based feedback control on the system

(non-autonomous demon) with the relevant theory presented in Chapter 2 and example toy mod-

els in Chapters 3 and 4 . In Chapter 5 we take the feedback-controlled model (non-autonomous

demon) from Chapter 4 and convert it to a non-feedback model (autonomous demon) that can

achieve the same behavior as the feedback-controlled model. Unlike previous chapters related

to Maxwell’s demons, in Chapter 6 we discuss an open-loop (non-feedback) control system that
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is related to the field of shortcuts to adiabaticity [65]. In Chapter 7 we conclude the thesis by

presenting future research directions.

1.3.2 Information as fuel in a double quantum dot

A large part of this thesis is related to the “Information as Fuel” (IaF) collaborative project

where the goal is to implement an electronic model of Maxwell’s demon [4] in a double quantum

dot (DQD) system [66]. Chapter 2 discusses the theory of continuous monitoring and feedback

control that is required for investigation of the models of feedback-controlled Maxwell’s demons

and also presents the multiple-timescale perturbation (MTSP) analysis for studying separation

of timescales in such systems. Chapter 3 discusses a relatively simple toy model of feedback-

control demon and shows how MTSP analysis can be used for analyzing such systems. Chapter 4

introduces a quantum version of the DQD Maxwell’s demon and presents trajectory simulations

of the model. Chapter 5 is an independent spin-off from the original goal of the IaF project

where I use the same DQD Maxwell’s demon [4] but investigate it in the context of information

ratchets to study the connection between non-autonomous and autonomous paradigms of the

Maxwell’s demon, and discuss the accounting of consumption of information resources required

for such a model. Chapter 6 contains independent research work that is not related to the IaF

collaboration but explores ideas related to non-feedback control of a driven system to achieve

quasistatic behavior.
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1.3.3 Modelling frameworks and theoretical tools

We explore various toy models throughout the thesis which are investigated using a vari-

ety theoretical tools and modelling frameworks. Here I give a brief summary of the modelling

frameworks and theoretical tools used in each of the chapters. Chapter 2 presents the theory

for non-autonomous feedback control [61, 62] primarily using a framework in which both the

system of interest and the control parameter evolve under classical diffusive dynamics [48, 67].

Later in the same chapter, the cases of open quantum systems dynamics [63, 64] and discrete

state stochastic dynamics [48] of the system are discussed. In Chapter 3, the dynamics of the toy

model system are modelled with the framework of classical discrete-state stochastic processes

and the control parameter dynamics are modelled with a classical diffusive process. This chapter

focuses on the application of the master equation framework for such processes. Chapter 4 deals

with a system that is modelled within the framework of open quantum systems and the control

parameter is modelled with classical diffusive dynamics. Instead of using a master equation ap-

proach, this chapter explores a simulation-based approach [68] to investigate the properties of

the system under consideration. In Chapter 5 the framework of classical discrete-state stochastic

process is used to model the system and tools from network theory of master equations [69] and

stochastic thermodynamics are used to analyze it. In Chapter 6 we investigate a toy model of

classical periodically driven asymmetric double well system. The framework of this chapter is

based on classical Hamiltonian mechanics [70, 71] of one degree of freedom system, and we

additionally use tools from chaos theory, ergodic theory and dynamical systems theory [72, 73]

to analyze this model.
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1.4 Summary of chapters

The Chapters 2, 3 and 4 of this thesis correspond to works done in collaboration and the

Chapters 5 and 6 correspond to works done independently by the author. Refs. [74, 75, 76] also

deal with topics similar to the Chapters 2, 3 and 4 of this thesis.

Chapter 2: The key publication relevant to this chapter is Ref. [1]. The modelling frame-

work for continuously monitored feedback controlled system is introduced in this chapter. This

chapter contains a pedagogical review of the continuous measurement framework that is required

to study non-autonomous models of Maxwell’s demon. Then, a master equation [1] formal-

ism is discussed for studying continuously monitored feedback-controlled system. The master

equation formalism is presented for feedback controlled classical diffusive systems extending of

the original Quantum Fokker-Planck Master Equation (QFPME) [1] to classical diffusive sys-

tems. The multiple-timescale perturbation (MTSP) analysis for time scale separation is also

presented for the classical diffusive feedback-controlled systems following the Fock-Liouville

space based MTSP analysis of QFPME from Ref. [1]. Finally a comparison of the results for the

classical diffusive system with the cases for quantum and discrete state stochastic systems is pre-

sented. Hence, this chapter presents a unified framework for modelling continuously monitored

feedback-controlled classical, quantum and stochastic systems.

Chapter 3: The key publication relevant to this chapter is also Ref. [1]. In this chapter the

formalism introduced in the previous chapter is used to study a toy model of information engine.

This toy model was discussed as an example of the application of QFPME, and two different

analysis methods were presented in Ref. [1]. In this chapter we discuss one of those methods, the

MTSP based analysis, in detail.
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Chapter 4: The key publication relevant to this chapter is Ref. [3]. This chapter discusses

the quantum version of the classical nonatonomous model of DQD Maxwell’s demon [4] fol-

lowing Ref. [3]. In Ref. [3], the model was analyzed based on both the master equation and

trajectory simulation methods of which we only discuss the trajectory simulation based approach

in this chapter. The chapter presents the theoretical details of modelling of the quantum version

of the demon and presents methods of implementation details of the simulations. Simulation

results from Ref. [3] are presented in this chapter to discuss different qualitative behavior of the

demon and the emergence of classical model from the quantum model.

Chapter 5: The key publication relevant to this chapter is Ref. [2]. In this chapter we discuss

a simple strategy for constructing an information ratchet or memory-tape model of Maxwell’s

demon from a feedback-controlled model. Here, we illustrate our approach by converting the

feedback-controlled double quantum dot model [4] (the classical version of the model discussed

in the previous chapter) to a memory-tape model. We use the underlying network structure of

the original model to design a set of bit interaction rules for the information ratchet. The new

model is solved analytically in the limit of long interaction times. For finite-time interactions,

semi-analytical phase diagrams of operational modes are obtained. Stochastic simulations are

presented to support the theoretical results. This chapter is directly adapted from Ref. [2].

Chapter 6: The results of this chapter are yet to be published. In this chapter the theory of

flow-field based fast-forward shortcuts to adiabaticity [77] is extended to classical periodically

driven (Floquet) Hamiltonian systems of one degree of freedom. Relevant background theory

relating to the shortcuts to adiabaticity in classical system is presented at the beginning of the

chapter. Then we discuss how the dynamical map for periodic evolution of the angle variable on

the preserved energy shell can be constructed. We analyze a toy model of an asymmetric driven
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double well and show a bifurcation phenomenon in the angle variable map. We also discuss the

transfer operator theory to show how the probability distribution of the angle variable evolves in

the periodic driving using the toy model under consideration.
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Chapter 2: Unified perspective on non-autonomous feedback performed on con-

tinuously measured systems

This chapter is based primarily on work done in collaboration with Björn Annby-Andersson,

Pharnam Bakhshinezhad, Guilherme De Sousa, Christopher Jarzynski, Peter Samuelsson, and

Patrick P. Potts, which has been published in the article “Quantum Fokker-Planck Master Equa-

tion for Continuous Feedback Control” [1]. Guilherme De Sousa and I together worked on the

Fock-Liouville space based multiple-timescale perturbation (MTSP) analysis of master equation

to calculate the first-order corrections to the separation of time scales approximation in Ref. [1].

In this chapter we present the theory of continuous measurement and feedback formalism, the

master equation and MTSP analysis from Ref. [1] in the framework of classical diffusive dy-

namics. Then we compare the classical diffusive case to the quantum and discrete stochastic

counterparts.

2.1 Chapter overview

This chapter develops a theory that describes how the statistical state of a continuously

monitored feedback-controlled system evolves in time. Sec. 2.2 of the chapter reviews classi-

cal measurement theory and the theory of continuous measurements following Refs. [61, 78].

In Sec. 2.3, the feedback-control master equation for classical diffusive and deterministic flow is
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derived following the steps of the original derivation of the Quantum Fokker-Planck Master Equa-

tion (QFPME) [1, 74, 75]. Sec. 2.4 discusses multiple-timescale perturbation (MTSP) analysis

of feedback-lag for the obtained master equation, in the context of the separation of timescales.

Then the relation to linear response theory is explored. In Sec. 2.5, we compare the feedback-

control master equation for the diffusive flow, and its perturbation limits, with their analogues for

quantum and discrete-state stochastic systems.

In summary, this chapter presents a pedagogical discussion of continuous measurement and

feedback-controlled dynamics, extending the results of Ref. [1] to classical continuous-degree-of-

freedom systems, and a comparative analysis with the quantum and stochastic jump counterparts

to illustrate the generality of the formalism across different types of systems. The results from

this chapter will be used in Chapters 3 and 4 for analyzing model problems in the context of

non-autonomous feedback control and Maxwell’s demons.

2.2 Review of classical continuous measurement formalism

The classical measurement process in the engineering and data assimilation literature is

often described by the name state based filtering or probabilistic state space models, and in

mathematics as nonlinear stochastic filtering theory. Here we present a simplified version of the

key ideas of this theory following Refs. [61, 62, 79, 80], and by drawing classical analogues of

quantum weak measurement theory discussed in Ref. [74, 75, 78].
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2.2.1 Evolution without measurement

First we discuss a situation in which a system evolves without being measured by an ex-

ternal agent. With this discussion, we also introduce the distinction between a system’s physical

and statistical states.

We consider a classical one dimensional system whose physical state is described by a

continuous variable X at time t. The dynamics of this state variable X can be a deterministic

flow or a Markovian diffusive process, and can be described by an ordinary differential equation

or a Langevin equation (stochastic differential equation), respectively. If we consider an ensemble

of trajectories generated under these dynamics, then the probability density of the state variable

at time t is given by ρ(X, t), which is normalized as
∫
dXρ(X, t) = 1. The master equation for

the time evolution ρ(X, t) is

∂ρ(X, t)

∂t
= L̂X ρ(X, t). (2.1)

Here, L̂X is a linear operator that acts on the probability density ρ(X, t). The subscript X in L̂X

implies that the operator acts on functions of variable X . For example, if the dynamics of the

physical state X are given by an Ornstein–Uhlenbeck process,

Ẋ = −αX + ξ, ⟨ξ(t)⟩ = 0, ⟨ξ(0)ξ(t)⟩ = 2∆δ(t), (2.2)

then the corresponding master equation for the evolution of ρ(X, t) is

∂ρ(X, t)

∂t
= α

∂(Xρ(X, t))

∂X
+∆

∂2(ρ(X, t))

∂X2
. (2.3)
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In this case the operator L̂X is

L̂X(∗) = α
∂(X ∗ )
∂X

+∆
∂2( ∗ )
∂X2

. (2.4)

We also consider a time-dependent master equation where the linear operator L̂X(D(t)) explicitly

depends on a time-dependent parameter D(t):

∂ρ(X, t)

∂t
= L̂X(D(t)) ρ(X, t). (2.5)

First, we consider the case whereD(t) represents a predetermined control protocol. Later we will

discuss how D(t) to can be related to measurement outcomes to create a measurement-based,

feedback-controlled system.

To avoid the ambiguity with the physical state of the system X , we will use the term

statistical state to refer to the probability distribution that captures our knowledge of the system.

Suppose we start with a prior guess about the initial condition of the physical state X of our

system. This guess or knowledge about the physical state is captured by the a distribution function

ρ0(X), from which, we assume, the initial condition X has been sampled. This distribution

function ρ0(X) is the initial statistical state of the system. Using ρ0(X) as the initial condition,

one can obtain the distribution at time t as ρ(X, t) by solving Eq. (2.5).

If exact knowledge about the initial system state, say X = X0 at t = 0 is known, then the

initial statistical state is given as ρ0(X) = δ(X −X0). Now the system evolves from 0 ≤ t < τ .

We assume that the evolution happens without any measurement on the system. However, it is

possible to make a guess about the final state of the system at time t = τ , since the statistical state
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ρ(X, t) has evolved deterministically under the master Eq. (2.5). The final distribution under this

evolution is formally given as

ρ(X, τ) = T {e
∫ τ
0 dtL̂X(D(t))δ(X −X0)} (2.6)

where T signifies time ordering in the integral. Similar arguments hold if there is uncertainty in

the knowledge of initial state of the system. For any general initial statistical state ρ0(X), the

final statistical state of the system is

ρ(X, τ) = T {e
∫ τ
0 dtL̂X(D(t))ρ0(X)}. (2.7)

2.2.2 Evolution with a single purely Bayesian measurement

Now we introduce a single measurement to the setup discussed above. We imagine that an

external agent makes an instantaneous measurement of an observable O(X) of the system’s state

at time t′, where 0 < t′ < τ . The initial statistical state of the system is ρ0(X) and let it evolve

without measurement from t = 0 to t = t′. The statistical state of the system at t = t′ is

ρ(X, t′) = T {e
∫ t′
0 dtL̂X(D(t))ρ(X, 0)} (2.8)

Suppose the agent obtains the measurement of O(X) outcome zt′ for the instantaneous measure-

ment at time t = t′. We emphasize that the measurement process here has no back-action, i.e.,

the measurement process does not perturb the system state X . In this case the measurement is

a purely Bayesian measurement [61], and the post-measurement statistical state of the system
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at time t′ is given by the conditional distribution ρ(X, t′|zt) if the agent keeps a record of the

measurement outcome zt′ . The post-measurement statistical state ρ(X, t′|zt) is related to the

pre-measurement statistical state ρ(X, t′) by Bayes’ theorem:

ρ(X, t′|zt) = Mzt′
[ρ(X, t′)] =

ρt′(zt′ |X)ρ(X, t′)∫
dXρt′(zt′|X)ρ(X, t′)

. (2.9)

Here ρt′(zt′ |X) is the distribution function of the measurement outcome zt′ given the system state

is X at time t′. We refer to the distribution function ρt′(zt′ |X) as the measurement model. The

denominator in Eq. (2.9) is the probability distribution of obtaining the outcome zt′ at t = t′, when

all possible system configurations are considered. We write the denominator as the distribution

function ρt′(zt′), which can be understood as the expectation value of the the measurement model

ρt′(zt′|X) when the system stateX is sampled from the distribution ρ(X, t′). Hence, we can write

it as

ρt′(zt′) =

∫
dXρt′(zt′|X)ρ(X, t′) = ⟨ρt′(zt′ |X)⟩ρ(X,t′) (2.10)

In Eq. (2.9), we have introduced the functional transformation Mzt′
to describe the measurement

operation on the statistical state ρ(X, t′). Note that this transformation or Bayesian measurement

map [79] given by Mzt′
is non-linear due to the normalization term ρt′(zt′) in the denominator.

After the measurement, the statistical state of the system evolves again under the dynamics

generated by L̂X(D(t)) from time t = t′ to t = τ . The final statistical state of the system is

ρ(X, τ |zt′) = T {e
∫ τ
t′ dtL̂X(D(t))ρ(X, t′|zt′)}

= T
{
e
∫ τ
t′ dtL̂X(D(t))Mzt′

[
T {e

∫ t′
0 dtL̂X(D(t))ρ(X, 0)}

]} (2.11)
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The final statistical state ρ(X, τ |zt′) generally differs from the final state ρ(X, τ) in Eq. (2.7)

when the system evolves without any measurement. The evolution of the statistical state with-

out any measurement (Eq. (2.7)) is completely deterministic, but the measurement operation in

Eq. (2.11) introduces stochasticity in the evolution of the statistical state through the measure-

ment outcome zt′ . In this case, for every realization of the experiment the final statistical state

ρ(X, τ |zt′) depends on the stochastic quantity zt′ .

2.2.3 Evolution with repeated frequent measurements

Now we consider similar dynamics governed by the master equation (2.5); but in contrast

to the single measurement scenario we imagine a repeated measurement process. We discretize

the time interval t = 0 to t = τ into N small time intervals of duration δt; thus Nδt = τ . We

assume the instantaneous measurement operations take place in a repetitive fashion after every

δt interval starting from t = 0 to the final one at t = (N − 1)δt. We describe this series of

measurements by the measurement outcomes {zk}N−1k=0 = {z0, z1, z2, . . . , zN−1} and correspond-

ing measurement maps {Mzk}N−1k=0 , where zk is the outcome of the measurement performed at

tk = kδt. We now introduce the notion of the measurement trajectory as the ordered sequence

Γ
(z)
k = (z0, z1, z2, . . . , zk−1, zk) which denotes the outcomes obtained up to time t = kδt in a

particular realization of the experiment. Between measurements the dynamics are governed by

the master equation (2.5). Due to the time-dependent nature of the operator L̂X(D(t)), the evo-

lution operators in different time intervals δt generally differ from each other. Therefore, we also

discretize the control protocol D(t) as the ordered sequence Γ
(D)
k = (D0, D1, . . . , Dk−1, Dk).

Using the sequence Γ
(D)
k we can write the sequence of operators {L̂X(Dk)}N−1k=0 to capture the
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time-dependent nature of the dynamics of Eq. (2.5). Using these notations we describe the time

evolution of the statistical state with repeated measurements as the ordered chain of operations:

ρ(X, τ |Γ(z)
N−1) = eδtL̂X(DN−1)MzN−1

◦ eδtL̂X(DN−2)MzN−2
◦. . . . . . eδtL̂X(D1)Mz1◦ eδtL̂X(D0)Mz0 [ρ0(X)].

(2.12)

We use the notation ◦ to represent functional composition since the measurement maps are non-

linear transformations, in contrast to exponentiated operators which are linear. The iterative state

evolution in Eq. (2.12) is discussed below in detail.

In the evolution sequence given by Eq. (2.12), at any intermediate time t = tk with k ≥ 1,

we describe the (pre-measurement) statistical state of the system as

ρ(X, tk|Γ(z)
k−1) = eδtL̂X(Dk−1)MkN−1

◦ . . . . . . eδtL̂X(D1)Mz1 ◦ eδtL̂X(D0)Mz0 [ρ0(X)] (2.13)

The post measurement statistical state at t = tk is given as ρ(X, tk|zk,Γ(z)
k−1) ≡ ρ(X, tk|Γ(z)

k ) and

it is obtained from the pre-measurement state ρ(X, tk|Γ(z)
k−1) by the Bayesian update map Mzk ,

following the definition from Eq. (2.9) as

ρ(X, tk|Γ(z)
k ) = Mzk

[
ρ(X, tk|Γ(z)

k−1)
]

=

(
ρ
(m)
tk

(zk|X,Γ(z)
k−1)

ρ
(m)
tk

(zk|Γ(z)
k−1)

)
ρ(X, tk|Γ(z)

k−1).

(2.14)

Here, ρ(m)
tk

(zk|X,Γ(z)
k−1) is the measurement model at time t = tk and the normalization factor is

ρ
(m)
tk

(zk|Γ(z)
k−1) =

∫
dX ρ

(m)
tk

(zk|X,Γ(z)
k−1)ρ(X, tk|Γ

(z)
k−1). The post-measurement state then evolves
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under the master equation (2.5) from t = tk to t = tk+1 to the state

ρ(X, tk+1|Γ(z)
k ) = eδtL̂X(Dk)ρ(X, tk|Γ(z)

k )

= eδtL̂X(Dk)Mzk

[
ρ(X, tk|Γ(z)

k−1)
]
.

(2.15)

Eq. (2.15) is an iterative functional equation that takes the statistical state of the system ρ(X, tk|Γ(z)
k−1)

to ρ(X, tk+1|Γ(z)
k ) due to the instantaneous measurement at t = tk and then evolution for t = tk

to t = tk+1. With Eq. (2.15) the initial state ρ0(X) is evolved to the final state ρ(X, τ |Γ(z)
N−1)

which is conditioned on the measurement record Γ
(z)
N−1.

This discretization scheme mentioned above leads to a trajectory of measurement outcomes

Γ
(z)
N−1 for every realization. Following classical and quantum measurement theory Refs. [52, 55,

74, 78, 80, 81, 82], we introduce the notion of a path integral that corresponds to a sum over all

possible measurement outcome trajectories as,

∫
D[Γ

(z)
N−1] :=

∫ ∫
· · ·
∫ ∫

dzN−1dzN−1 . . . dz1dz0, (2.16)

which will be useful later. Now we define the distribution function of the measurement trajecto-

ries,

P (m)(Γ
(z)
N−1) =

[
N−1∏
k=1

ρ
(m)
tk

(zk|Γ(z)
k−1)

]
ρ
(m)
t0 (z0), (2.17)

where, ρ(m)
t0 (z0) =

∫
dXρ

(m)
t0 (z0|X)ρ0(X), and ρ

(m)
t0 (z0|X) corresponds to the measurement

model at t = t0. The average over all possible measurement trajectories is then given as

E[(∗)] :=
∫

D[Γ
(z)
N ] P (m)(Γ

(z)
N−1) (∗), (2.18)
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which we use later to derive the master equation.

2.2.4 Gaussian measurement model and continuous measurement equation

Next we specify our measurement model by choosing the form of the function ρ(m)
tk

(zk|X,Γ(z)
k−1).

We consider that the agent is monitoring an observable O(X) which is a function of the physical

state X . We also assume that the observable does not change with time. Now we introduce a

measurement rate or measurement strength λ that captures how close zk was to the observable

O(X) at time t = tk. A higher (lower) value of λδt implies more accurate (inaccurate) mea-

surement. In the limit λ → ∞ with a finite δt, we expect zk → O(X). We further assume

that the measurement model at time t = tk is independent of previous measurement outcomes:

ρ
(m)
tk

(zk|X,Γ(z)
k−1) = ρ

(m)
tk

(zk|X). With these considerations, we choose a Gaussian measurement

model [61, 80] in spirit of the Gaussian Kraus operators [78] for the quantum weak measurement

model. For any t = tk, this measurement model is

ρ
(m)
tk

(zk|X) = N e−2λδt(zk−O(X))2 (2.19)

where, N =
√

2λδt/π. This measurement model implies the signal generated from the mea-

suring device follows a Gaussian distribution centered around O(X) and has a spread that is

controlled by λδt. For a fixed value of λ, if we decrease the value of δt the spread of this distri-

bution increases. From this we can write,

ρ
(m)
tk

(zk|Γ(z)
k−1) =

∫
dXρ

(m)
tk

(zk|X)ρ(X, tk|Γ(z)
k−1)

= N
∫

dXe−2λδt(zk−O(X))2ρ(X, tk|Γ(z)
k−1)

(2.20)
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We perform a change in the measure of integration and write

ρ
(m)
tk

(zk|Γ(z)
k−1) = N

∫
dO e−2λδt(zk−O)2 ρ̃(O, tk|Γ(z)

k−1) (2.21)

where the distribution ρ̃(O, tk|Γ(z)
k−1) and ρ(X, tk|Γ(z)

k−1) are related by

dOρ̃(O, tk|Γ(z)
k−1) =

∫
dXδ(O −O(X))ρ(X, tk|Γ(z)

k−1) (2.22)

The variable O should not be confused with the function O(X). If δt is small enough, then

the spread of the distribution N e−2λδt(zk−O)2 is much wider than the spread of the distribution

ρ̃(O, tk|Γ(z)
k−1) in the variable O. Thus, ρ̃(O, tk|Γ(z)

k−1) can be approximated as a delta function

δ(O − ⟨O⟩k−1) located at the mean

⟨O⟩k−1 =
∫

dO O ρ̃(O, tk|Γ(z)
k−1). (2.23)

With this approximation, we rewrite Eq. (2.21) as

ρ
(m)
tk

(zk|Γ(z)
k−1) ≈ N exp

[
−2λδt(zk − ⟨O⟩k−1)2

]
. (2.24)

Then the Bayesian update rule from Eq. (2.14) can be rewritten as

ρ(X, tk|Γ(z)
k ) = exp

[
−2λδt

{
(zk −O(X))2 − (zk − ⟨O⟩k−1)2

}]
ρ(X, tk|Γ(z)

k−1). (2.25)
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Since zk is sampled from a Gaussian distribution ρ(m)
tk

(zk|Γ(z)
k−1) in Eq. (2.24), it has the mean

E[zk] = ⟨O⟩k−1 and variance V ar[zk] = 1/4λδt. We can make a transformation of variables and

introduce a new Gaussian random variable ∆Wk:

∆Wk√
δt

= 2
√
λδt(zk − ⟨O⟩k−1). (2.26)

Here ∆Wk is sampled from a Gaussian distribution with E[∆Wk] = 0 and variance E[∆W 2
k ] =

δt. Since δt is a small number we can approximate any realization of ∆W 2
k by its mean as

∆W 2
k ≈ E[∆W 2

k ] = δt in the spirit of the Ito calculus [48, 78]. Using the expression of ∆Wk

from Eq. (2.26) in the expression for ρ(X, tk|Γ(z)
k ), and expanding the exponential terms, we get

ρ(X, tk|Γ(z)
k ) =

(
1 + 2

√
λ∆Wk(O(X)− ⟨O⟩k−1)− 2λδt(⟨O⟩k−1 −O(X))2

)
ρ(X, tk|Γ(z)

k−1)

+
1

2
4λ∆W 2

k (O(X)− ⟨O⟩k−1)2ρ(X, tk|Γ(z)
k−1) +O(∆W 3

k )

(2.27)

Since ∆W 2
k ≈ δt, the terms quadratic in ∆Wk become proportional to δt upon averaging. In

the limit δt → 0 we treat the measurement as a continuous signal Γ(z)
k ≡ z(t), and we replace

⟨O⟩k−1 → ⟨O⟩t to denote its instantaneous value. Using Ito calculus, the limiting value of ∆Wk

can be identified as the increment of Brownian motion or Wiener increment dW (t) when δt→ 0.

The Wiener increment dW has the following properties: E[dW (t)] = 0 and dW 2(t) = dt where

dt is the infinitesimal differential version of δt and, E[A(t)dW (t)] = 0 for anyA(t). Thus, taking

the limit δt→ 0, we obtain the Ito stochastic differential equation (SDE)

dρ(X, t|z(t)) = 2
√
λdW (t)(O(X)− ⟨O⟩t)ρ(X, t|z(t)). (2.28)
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This equation in classical stochastic filtering theory literature known as the Kushner Equation or

Kushner–Stratonovich Equation [61, 62, 83] for continuous measurement.

When the measurement is followed by an evolution under the master equation, we use

Eq. (2.27) in Eq. (2.15), and expand the exponential to obtain,

ρ(X, tk+1|Γ(z)
k )

= eδtL̂X(Dk)ρ(X, tk|Γ(z)
k )

=
[
1 + δtL̂X(Dk) +O(δt2)

] (
1 + 2

√
λ∆Wk(O(X)− ⟨O⟩k−1)− 2λδt(⟨O⟩k−1 −O(X))2

)
ρ(X, tk|Γ(z)

k−1)

+
1

2
4λ∆W 2

k

[
1 + δtL̂X(Dk) +O(δt2)

]
(O(X)− ⟨O⟩k−1)2ρ(X, tk|Γ(z)

k−1) +O(∆W 3
k ).

(2.29)

In the limit δt→ 0 limit the equation above reduces to the following stochastic partial differential

equation (SPDE):

dρ(X, t|z(t)) = dtL̂X(D(t))ρ(X, t|z(t)) + 2
√
λdW (O(X)− ⟨O⟩t)ρ(X, t|z(t)) (2.30)

which is a variation of the Kushner equation (2.28) with a deterministic part. This equation in

context of quantum mechanics is known as the Belavkin equation [61, 78], and here we will refer

to Eq. (2.30)as the classical Belavkin equation by analogy with the quantum case. Note that

Eq. (2.30) is a nonlinear-SPDE for ρ(X, t|z(t)) as the average ⟨O⟩t depends on the statistical

state ρ(X, t|z(t)) as ⟨O⟩t =
∫
dXO(X)ρ(X, t|z(t)). However the non-linearity is attached to

the stochastic part of Eq. (2.30).

We have derived Eq. (2.28) and Eq. (2.30) following analogies with quantum weak mea-
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surement theory [74, 78]. For simplicity we have kept our discussion limited to the case where

the physical state of the system X , the observable O(X) and the control parameter D(t) are

all scalar quantities. The generalization of Eq. (2.28) and Eq. (2.30) to the multivariate case is

possible [61, 62]. A special case of Eq. (2.30) is also of interest: when the operator L(D(t))

corresponds to linear diffusion or Ornstein–Uhlenbeck (OU) process, we obtain the equation for

the Kalman-Bucy filter [62].

2.3 Master equation for continuously monitored feedback-controlled diffusive

flows

In this section, we derive a master equation for continuously monitored, feedback-controlled

diffusive systems as an extension of the QFPME to classical diffusive and deterministic processes.

The derivation shown here follows the same steps as the derivation of the QFPME for quantum

systems given in Ref. [1, 74].

2.3.1 Filtering equation for the measurement signal

So far we have considered the case where the control protocol D(t) (or equivalently Γ
(D)
N )

was predetermined. To introduce the feedback control in our model we now make the value of

the control parameter D(t) at time t = t′ functionally dependent on the past measurement signal

up to that time instant z(t), 0 ≤ t ≤ t′ . In the discrete case we write it as Dk ≡ Dk[Γ
(z)
k ].

This also implies that the trajectory of the control parameter Γ(D)
k is a function of the trajectory of

measurement signal Γ(z)
k , i.e. Γ(D)

k ≡ Γ
(D)
k [Γ

(z)
k ]. The choice of this functional relation between

Dk and Γ
(z)
k defines a filtering process that converts the measurement signal from the detector
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to a feedback control protocol. For our model, we chose the filtering to be a low-pass filter

(exponential smoothing) over the measurement trajectory:

Dk ≡ Dk[Γ
(z)
k ] =

k∑
i=0

γδte−γ(k−i)δtzi (2.31)

For the continuous case this relation is written as

D(t) =

∫ t

−∞
dsγe−γ(t−s)z(s) (2.32)

This signal filtering protocol mimics a detector with a finite bandwidth [1, 61, 74] where the

control protocol is a smoothed version of the measurement signal. In Eqs. (2.31) and (2.32), we

have introduced the signal filtering rate (or bandwidth) γ, which controls weighting coefficients

for the averaging of the measurement signal. A large value of γ implies the filtering kernel dies

out quickly and does not go back much in the past trajectory; and hence the control parameter Dk

will be very close to the state of the current measurement signal output zk. As a result the noise

from the measurement signal will affect the feedback signal more and feedback will be noisy.

In contrast, a small value of γ implies that the filtering kernel takes account of the long past of

the measurement trajectory. In this case the control parameter Dk will move slowly compared

to the measurement signal variable zk and thus the feedback signal will be lagging behind the

measurement signal but will be relatively smoother.

Notice that the current control parameter Dk can be calculated from the state of the control

parameter at the previous time instant (Dk−1) and the current measurement outcome zk. This can
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be seen by rewriting the Eq. (2.31) as

Dk = γδtzk +
k−1∑
i=0

γδte−γ(k−i)δtzi

= γδtzk + e−γδtDk−1

(2.33)

Now by replacing zk with ∆Wk from Eq. (2.26) and expanding e−γδt in a Taylor series we get,

Dk −Dk−1 = γδt (⟨O⟩k−1 −Dk−1) +
γ

2
√
λ
∆Wk +O(δt2). (2.34)

Taking the limit δt → 0, and treating D(t) as a continuous signal, we obtain the stochastic

differential equation (SDE)

dD(t) = γ (⟨O⟩t −D(t)) dt+
γ

2
√
λ
dW (t) (2.35)

From Eq. (2.35) we see that the control parameter evolves under an Ornstein–Uhlenbeck process

similar to an overdamped Brownian particle under a time-dependent quadratic potential centered

at ⟨O⟩t. [1]

2.3.2 Derivation of master equation

Using the path averaging introduced in Eq. (2.18), we define a joint distribution

ρ(X, D̃, tk) = E
[
ρ(X, tk|Γ(z)

k−1)δ(Dk[Γ
(z)
k ]− D̃)

]
. (2.36)
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This definition can be understood as an average of the function ρ(X, tk|Γ(z)
k−1) over the distribution

of measurement trajectories up to time t = tk, with a constraint that only the measurement

trajectories that result in the feedback variable D(tk) = Dk at time t = tk contribute to the

average. For the continuous case we denote this joint distribution as

ρ(X, D̃, t) = E
[
g(D[z(t)], X, D̃, t)

]
= E

[
ρ(X, t|z(t))δ(D[z(t)]− D̃)

] (2.37)

where we have defined g(D[z(t)], X, D̃, t) = ρ(X, t|z(t))δ(D[z(t)]− D̃). Notice that the depen-

dence of g(D[z(t)], X, D̃, t) on z(t) is implicit and is encoded by the two functions D(t)[z(t)]

and ρ(X, t|z(t)). We already know the stochastic differential equations (SDE) for the evolution of

these quantities from Eq. (2.30) and Eq. (2.35). From now on we will denote g(D[z(t)];X, D̃, t)

as g; D(t)[z(t)] as D; and ρ(X, t|z(t)) as ρ for conciseness.

We now follow the standard method of derivation of a Fokker-Planck equation from a SDE

[61]. To obtain a stochastic differential equation for the evolution of g = ρδ(D − D̃), we first

need to obtain the SDE for the evolution of δ(D − D̃). Using Ito’s Lemma on Eq. (2.35), we can

write down a SDE of δ(D − D̃) for a fixed D̃ as

dδ(D − D̃)|D̃ = dt γ (⟨O⟩t −D)

[
∂δ(D − D̃)

∂D

]
D̃

+ dt
1

2

(
γ

2
√
λ

)2
[
∂2δ(D − D̃)

∂D2

]
D̃

+ dW

(
γ

2
√
λ

)[
∂δ(D − D̃)

∂D

]
D̃

(2.38)

Now to obtain the SDE for g (for a fixed D̃, we omit the subscripts from now on) we have

dg = δ(D − D̃) dρ+ ρ dδ(D − D̃) + dδ(D − D̃) dρ (2.39)
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Using the expression for dδ(D − D̃) from Eq. (2.38), the expression for dρ from Eq. (2.30), and

dW (t)2 = dt, we write,

dg = dt

[
δ(D − D̃)L̂X(D)ρ+ γ (O(X)−D)

∂δ(D − D̃)

∂D
ρ+

γ2

8λ

∂2δ(D − D̃)

∂D2
ρ

]
+dW (t) [. . . ]

(2.40)

where we have collected the terms proportional to dt and dW (t) separately. We have omitted the

details of the terms proportional to dW (t) for conciseness here since eventually they will vanish.

We now use some properties of delta functions on the terms that are proportional to dt. For the

first term, using δ(x− a)f(x) = δ(x− a)f(a), we get

δ(D − D̃)L̂X(D)ρ = δ(D − D̃)L̂X(D̃)ρ

= L̂X(D̃)
[
δ(D − D̃)ρ

]
= L̂X(D̃)g.

(2.41)

For the second term we use δ(x − a)f(x) = δ(x − a)f(a) and ∂δ(x−y)
∂x

= −∂δ(x−y)
∂y

to get the

following simplification:

γ (O(X)−D)
∂δ(D − D̃)

∂D
ρ = −γ (O(X)−D)

∂δ(D − D̃)

∂D̃
ρ

= −γ ∂

∂D̃

[(
O(X)− D̃

)
δ(D − D̃)ρ

]
= −γ ∂

∂D̃

[(
O(X)− D̃

)
g
]

(2.42)

For the third term, using ∂2δ(x−y)
∂x2

= ∂2δ(x−y)
∂y2

, we get

γ2

8λ

∂2δ(D − D̃)

∂D2
ρ =

γ2

8λ

∂2δ(D − D̃)

∂D̃2
ρ =

γ2

8λ

∂2g

∂D̃2
(2.43)

40



Thus we can rewrite Eq. (2.40) as

dg = dt

[
L̂X(D̃)g − γ

∂

∂D̃

[(
O(X)− D̃

)
g
]
+
γ2

8λ

∂2g

∂D̃2

]
+ dW (t) [. . . ] (2.44)

Now we take average over all measurement trajectories (note that E[dW (. . . )] = 0), and then

defining ∂ρ
∂t

:= dE[g]
dt

, we get the final result:

∂ρ(X, D̃, t)

∂t
= L̂X(D̃)ρ(X, D̃, t) + γ

∂

∂D̃

[(
D̃ −O(X)

)
ρ(X, D̃, t)

]
+
γ2

8λ

∂2ρ(X, D̃, t)

∂D̃2

(2.45)

For convenience we define the Ornstein-Uhlenbeck operator of D̃ with O(X) as a parameter as

F̂D̃(X)(∗) = γ
∂

∂D̃

[(
D̃ −O(X)

)
(∗)
]
+
γ2

8λ

∂2

∂D̃2
(∗) (2.46)

With this we rewrite Eq. (2.45) as

∂ρ(X, D̃, t)

∂t
=
[
L̂X(D̃) + F̂D̃(X)

]
ρ(X, D̃, t) (2.47)

This equation can be interpreted as follows. ρ(X, D̃, t) describes evolving statistical state of an

ensemble of physical system state X and the control parameter D̃, which is being calculated

by measuring the observable O(X) and then filtering the measurement outcomes by Eq. (2.32).

The operator L̂X(D̃) generates the dynamics of X , which depend on the control parameter D̃.

The operator F̂D̃(X) generates the dynamics of the control parameter D̃, which depends on the

the evolution of the state variable X through the measurements of the observable O(X). This

equation (Eq. (2.47)) is Markovian and deterministic in comparison to the Classical Belavkin
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equation (Eq. (2.30)), which is non-Markovian [since it has an explicit dependence on the past

trajectory z(t)] and stochastic. Reducing a non-Markovian equation to a Markovian equation by

adding filtering and averaging is an example of Markovian embedding of the dynamics.

2.3.3 Effective coupled Langevin equations for the system-detector dynamics

From Eq. (2.45) we can write down Langevin equations that would generate the given

Fokker-Planck Eq. (2.45). Suppose X obeys a Langevin equation with a term F (X, D̃) and a

noise term ηX(t) where ηX(t), is white noise with the properties, ⟨η(t)⟩ = 0 and ⟨ηX(0)ηX(t)⟩ =

2∆δ(t). The associated Fokker-Planck dynamics ofX are given by L̂X(D̃), with D̃ as the control

parameter. Then we consider a coupled Langevin dynamics of X and D̃:

Ẋ = F (X, D̃) + ηX(t) (2.48)

˙̃D = γ(O(X)− D̃) + ηD̃(t) (2.49)

where the noise ηD̃(t) is white noise with the following properties

⟨ηD̃(t)⟩ = 0, ⟨ηD̃(0)ηD̃(t)⟩ =
γ2

4λ
δ(t) (2.50)

These coupled Langevin equations will generate a dynamics that correspond to the joint system-

controller master equation (2.45). These Langevin equations can be directly simulated to gener-

ate the statistical properties of the feedback-controlled system without explicitly simulating the

underlying measurement and filtering processes.
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2.4 Separation of timescales using multiple-timescale perturbation (MTSP) ap-

proach

2.4.1 General formal solution

In this section we present a multiple-timescale perturbation (MTSP) analysis [1, 72, 84,

85, 86] of the detector and system dynamics, when the detector dynamics are fast. We start with

the feedback control master equation Eq. (2.45) and introduce two natural timescales - for the

system dynamics, (1/Γ(LX)), and for the control parameter dynamics, (1/γ). Now introduce a

scaled Ornstein–Uhlenbeck (OU) operator

F̃D̃(X) = Γ(LX)
∂

∂D̃

(
D̃ −O(X)

)
+
γΓ(LX)

8λ

∂2

∂D̃2
(2.51)

We rewrite Eq. (2.45) as

∂ρ(X, D̃, t)

∂t
=

[
L̂X(D̃) +

1

ϵ
F̃D̃(X)

]
ρ(X, D̃, t), (2.52)

where ϵ is a slowness parameter defined as

ϵ =
Γ(LX)

γ
. (2.53)
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Next we introduce the two time scales τ1 and τ2 in the spirit of multiple-timescale perturbation

(MTSP) analysis and rewrite Eq. (2.52) as

(
∂

∂τ1
+

1

ϵ

∂

∂τ2

)
ρ̃(X, D̃, τ1, τ2) =

[
L̂X(D̃) +

1

ϵ
F̃D̃(X)

]
ρ̃(X, D̃, τ1, τ2) (2.54)

where we have replaced ρ(X, D̃, t) with its two-time analogue ρ̃(X, D̃, τ1, τ2). If we replace

t = τ1 = ϵτ2, in Eq. (2.54) we recover the original problem given in Eq. (2.52). Now we

substitute the two-timed perturbation series:

ρ̃(X, D̃, τ1, τ2) =
∞∑
k′=0

ϵk
′
ρ̃k′(X, D̃, τ1, τ2) (2.55)

in Eq. (2.54), multiply both sides by ϵ and then collect terms in every power of ϵ to get a chain of

perturbation equations. For ϵ0 we get

(
∂

∂τ2
− F̃D̃(X)

)
ρ̃0(X, D̃, τ1, τ2) = 0, (2.56)

for which we have the following formal solution:

ρ̃0(X, D̃, τ1, τ2) = eτ2F̃D̃(X)ρ̃0(X, D̃, τ1, 0). (2.57)

For any ϵk with k ≥ 1 we have

(
∂

∂τ2
− F̃D̃(X)

)
ρ̃k(X, D̃, τ1, τ2) = −

(
∂

∂τ1
− L̂X(D̃)

)
ρ̃k−1(X, D̃, τ1, τ2), (2.58)
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for which the formal solution can be written as,

ρ̃k(X, D̃, τ1, τ2) = eτ2F̃D̃(X)ρ̃k(X, D̃, τ1, 0)−
∫ τ2

0

dse(τ2−s)F̃D̃(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρ̃k−1(X, D̃, τ1, s)

= eτ2F̃D̃(X)ρ̃k(X, D̃, τ1, 0)−
∫ τ2

0

dzezF̃D̃(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρ̃k−1(X, D̃, τ1, τ2 − z).

(2.59)

Setting τ2 = (τ1/ϵ) in Eqs. (2.57) and (2.59) gives us the regular perturbation solutions to the

original problem Eq. (2.47). Replacing τ2 = (τ1/ϵ) in Eqs. (2.57) and (2.59) and taking the

strong separation of the timescale limits ϵ→ 0, τ2 → ∞ with finite τ1 = ϵτ2, may lead to secular

or divergent behavior. We seek to avoid this problem by the MTSP method.

Next we simplify our analysis by assuming that we are only interested in the dynamics

happening at the slow timescales. To do this we use the spectral properties of the the operator

F̃D̃(X). It can be shown that given a value of X , for the OU operator F̃D̃(X), there is an unique

normalized stationary distribution

Π(D̃|X) =

√
4λ

γπ
exp

[
−4λ

γ
(D̃ −O(X))2

]
. (2.60)

Thus, the null-space ker
(
F̃D̃(X)

)
of the operator F̃D̃(X) is spanned only by one function

Π(D̃|X). We define the null-space projection operator P̂F̃D̃(X) as

P̂F̃D̃(X) (∗) = Π(D̃|X)

∫
dD̃ (∗) (2.61)
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and the projection operator outside of the null-space is defined as

Q̂F̃D̃(X) = 1̂− P̂F̃D̃(X), (2.62)

where 1̂ is the identity operator. From the spectral properties of F̃D̃(X), it can also be shown

that any arbitrary starting distribution P0(X, D̃) gets projected to ker
(
F̃D̃(X)

)
in the long-time

limit under the dynamics of F̃D̃(X), i.e,

lim
s→∞

esF̃D̃(X)P0(X, D̃) = P̂F̃D̃(X)P0(X, D̃) (2.63)

Now, under a strong separation of timescales we have a finite ϵ ≪ 1, a finite τ1, and

τ2 = (τ1/ϵ) ≫ τ1. Thus, τ2 can be approximated as τ2 → ∞ while keeping τ1 finite and

independent of τ2. Now we take the limit τ2 → ∞ on the both sides of Eqs. (2.57) and (2.59) to

get

ρ0(X, D̃, τ1) = Π(D̃|X)f0(X, τ1), (2.64)

ρk(X, D̃, τ1) = Π(D̃|X)fk(X, τ1)− lim
τ2→∞

∫ τ2

0

dzezF̃D̃(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρ̃k−1(X, D̃, τ1, τ2 − z)

(2.65)

where the functions ρk(X, D̃, τ1) and fk(X, τ1) are defined for any k ≥ 0 as

ρk(X, D̃, τ1) = lim
τ2→∞

ρ̃k(X, D̃, τ1, τ2), (2.66)
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fk(X, τ1) =
1

Π(D̃|X)
lim
τ2→∞

eτ2F̃D̃(X)ρ̃k(X, D̃, τ1, 0)

=
1

Π(D̃|X)
P̂F̃D̃

ρ̃k(X, D̃, τ1, 0).

(2.67)

Notice that the limit in the second term on the r.h.s. of Eq. (2.65) diverges if the integral has any

term linear in τ2. To avoid this divergent (secular) behavior, we impose the condition that the

source term of Eq. (2.58) must be outside of the ker
(
F̃D̃(X)

)
. Hence impose the condition,

P̂F̃D(X)

[
−
(
∂

∂τ1
− L̂X(D̃)

)
ρ̃k−1(X, D̃, τ1, τ2)

]
= 0, (2.68)

which implies ∫
dD̃

(
∂

∂τ1
− L̂X(D̃)

)
ρ̃k−1(X, D̃, τ1, τ2) = 0. (2.69)

With the condition above the secular terms in Eq. (2.65), arising due to the null space component

of the source term are avoided. Hence we can rewrite Eq. (2.65) using the condition Eq. (2.68) as

ρk(X, D̃, τ1) = Π(D̃|X)fk(X, τ1)− lim
τ2→∞

∫ τ2

0

dzezF̃D̃(X)Q̂F̃D(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρ̃k−1(X, D̃, τ1, τ2−z)

(2.70)

Since all the eigenvalues of the operator F̃D̃ outside the null-space are negative [67], we assume

that any transient generated by the source term almost instantly decays and can be neglected.

With this assumption we rewrite the Eq. (2.70) as

ρk(X, D̃, τ1) = Π(D̃|X)fk(X, τ1) + F̃+

D̃
(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρk−1(X, D̃, τ1) (2.71)

where we have introduced the pseudo-inverse or Drazin inverse [63, 87] of the operator F̃D̃(X)
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as

F̃+

D̃
(X) = −

∫ ∞
0

dz ezF̃D̃(X)Q̂F̃D̃(X) (2.72)

Notice that in this equation the first term on the r.h.s. of Eq. (2.71) is completely inside the

ker
(
F̃D̃(X)

)
and the second term of the r.h.s. of Eq. (2.71) is completely outside of ker

(
F̃D̃(X)

)
.

Thus, for any k ≥ 0, we have,

fk(X, τ1) =

∫
dD̃ρk(X, D̃, τ1) (2.73)

If we write the slow-time scale solution under separation of time scale as

ρ(X, D̃, τ1) =
∞∑
k=0

ϵkρk(X, D̃, τ1), (2.74)

then the fk(X, t)’s are null-space projection weights of the operator F̃D̃(X) for the order of the

perturbation expansion:

P̂F̃D̃(X)ρ(X, D̃, τ1) = P̂F̃D̃(X)

∞∑
k=0

ϵkρk(X, D̃, τ1)

= Π(D|X)
∞∑
k=0

ϵkfk(X, τ1)

(2.75)

From this equation, we define the overall null-space projection factor of ρ(X, D̃, τ1) as

f(X, τ1) =
∞∑
k=0

ϵkfk(X, τ1) (2.76)

Notice that f(X, τ1) is the marginal distribution of the system variable X at the slow time-scale
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τ1, under the separation of timescales limit:

f(X, τ1) =

∫
dD̃ρ(X, D̃, τ1) (2.77)

To determine the complete expression of ρk(X, D̃, t) at any order (k) with k ≥ 1, we must solve

for fk(X, τ1) and the complete expression of the perturbation correction in the previous order,

ρk−1(X, D̃, τ1). To determine fk(X, τ1), we use the expression for ρk(X, D̃, t), (containing an

unknown fk(X, τ1)) in the secularity removal condition (Eq. (2.68)) in the next order (k + 1):

P̂F̃D̃(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρk(X, D̃, τ1) = 0. (2.78)

Thus for any Π(D̃|X) we have,

∫
dD̃

[
∂

∂τ1
− L̂X(D̃)

]
ρk(X, D̃, τ1) = 0 (2.79)

Now substituting the expression of ρk(X, D̃, τ1) from Eq. (2.65), we get

∫
dD̃

[
∂

∂τ1
− L̂X(D̃)

](
Π(D̃|X)fk(X, τ1)

)
+

∫
dD̃

[
∂

∂τ1
− L̂X(D̃)

](
F̃+

D̃
(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρk−1(X, D̃, τ1)

)
= 0

(2.80)

which can be written as

∂fk(X, τ1)

∂τ1
−
(∫

dD̃L̂X(D̃)Π(D̃|X)

)
fk(X, τ1)

−
∫

dD̃ L̂X(D̃)

(
F̃+

D̃
(X)

[
∂

∂τ1
− L̂X(D̃)

]
ρk−1(X, D̃, τ1)

)
= 0

(2.81)
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2.4.2 0th and 1st order terms

Next we show the explicit calculation for the 0th and 1st order terms in the perturbation

expansion. Using Eq. (2.64) in Eq. (2.79) we get the equation for f0(X, τ1) as

∂f0(X, τ1)

∂τ1
= L̂(0)

X f0(X, τ1), (2.82)

L̂(0)
X =

∫
dD̃L̂X(D̃)Π(D̃|X). (2.83)

Eq. (2.82) can be solved for some given initial condition f0(X, 0) to obtain f0(X, τ1).

Now setting k = 1 in Eq. (2.81) and using the expression for ρ0(X, D̃, τ1), we obtain

[
∂f1(X, τ1)

∂τ1
− L̂(0)

X f1(X, τ1)

]
−
∫

dD̃ L̂X(D̃)

(
F̃+

D̃
(X)

[
∂

∂τ1
− L̂X(D̃)

]
Π(D̃|X)f0(X, τ1)

)
= 0

(2.84)

Since we have F̃+

D̃
(X)Π(D̃|X) = 0, we get the equation for f1(X, τ1) as:

∂f1(X, τ1)

∂τ1
= L̂(0)

X f1(X, τ1) + L̂(1)
X f0(X, τ1) (2.85)

where

L̂(1)
X = −

∫
dD̃L̂X(D̃)F̃+

D̃
(X)L̂X(D̃)Π(D̃|X), (2.86)

and L̂(0)
X is given in Eq. (2.83). Given an initial condition f1(X, 0), and the solution f0(X, τ1)

obtained from Eq. (2.82) with the initial condition f0(X, τ1), one can solve for f1(X, τ1) in
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Eq. (2.84). Using f0(X, τ1) and f1(X, τ1) we write the expression of ρ1(X, D̃, τ1) as

ρ1(X, D̃, τ1) = Π(D̃|X)f1(X, τ1)− F̃+

D̃
(X)L̂X(D̃)Π( ˜D|X)f0(X, τ1). (2.87)

Since we are neglecting the transient dynamics, we choose an initial condition of the joint dy-

namics to be completely inside the null-space of the operator F̃D, i.e. of the form:

ρ(X, D̃, 0) = f(X, 0)Π(D̃|X) (2.88)

Now we have freedom of choice in how to distribute f(X, 0) in different orders of perturbation.

It is often convenient to choose

f0(X, 0) = f(X, 0), (2.89)

fk(X, 0) = 0, k ≥ 1, (2.90)

such that the initial condition f(X, 0) is completely captured in the 0th order term of the pertur-

bation.

2.4.3 Effective master equation for system state under fast feedback

Switching back to the original variable τ1 → t, truncating the perturbation series in Eq. (2.76)

at order k = 1 and using Eqs. (2.82), (2.84) we obtain the evolution equation for f [1](X, t) =
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f0(X, t) + ϵf1(X, t), as

∂f [1](X, t)

∂t
= L̂(0)

X f0(X, t) + ϵL̂(0)
X f1(X, t) + ϵL̂1

Xf0(X, t)

= L̂(0)
X f [1](X, t) + ϵL̂(1)

X f [1](X, t)− ϵ2L̂(1)
X f1(X, t)

(2.91)

Thus replacing f [1](X, t) by f(X, t) we obtain an equation that is correct up to the order O(ϵ) as

∂f(X, t)

∂t
=
[
L̂(0)
X + ϵL̂(1)

X

]
f(X, t) +O(ϵ2) (2.92)

This equation gives us the evolution of the marginal distribution of the system variable under sep-

aration of timescales and can be solved for f(X, t) given an initial condition f(X, 0). From the

solution f(X, t), one can also obtain the joint system detector distribution under the separation

of timescales approximation:

ρ(X, D̃, t) =
[
1− ϵF̃+

D̃
L̂X(D̃)

]
Π(D̃|X)f(X, t) +O(ϵ2). (2.93)

Finally, we point out that Eq. (2.92) can alternatively be derived using Nakazima-Zwanzig pro-

jection operator methods [1, 74].

2.4.4 Connection to linear response theory

The separation of timescales calculations shown above can be interpreted in terms of lin-

ear response theory. At leading order, the control parameter is in the equilibrium distribution

Π(D̃|X) when the state of the system is X . The operator L̂(0)
X can be then understood as an

averaged or mean field operator of the family of operators: {L̂X(D̃)} where the parameter D̃ has
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been sampled from the distribution Π(D̃|X). Thus we write,

L̂(0)
X =

∫
dD̃ L̂X(D̃)Π(D̃|X) = ⟨L̂X(D̃)⟩Π(D̃|X) (2.94)

where ⟨. . . ⟩ϕ signifies the ensemble average over a distribution ϕ.

At first order in ϵ, there is a small lag in the dynamics of the control parameter D̃. The

effect of the lag is to drive the controller distribution away from its stationary state (leading order

distribution). Hence we consider L̂X(D̃) as an observable (or parameterized operator) of D̃,

whose equilibrium average is given by L̂(0)
X . At 0th order L̂(0)

X generates the dynamics of the

f(X, t). We see that L̂(1)
X captures the response away from this equilibrium average L̂(0)

X due to

a small perturbation to the equilibrium distribution Π(D̃|X). We note that L̂(1)
X can be expressed

as,

L̂(1)
X =

∫
dD̃L̂X(D̃)

∫ ∞
0

dz ezF̃D̃(X)(I − PF̃D̃(X))L̂(D̃)Π(D̃|X) (2.95)

which can be written as

L̂(1)
X =

∫ ∞
0

dz

∫
dD̃L̂X(D̃)ezF̃D̃(X)L̂X(D̃)Π(D̃|X)

−
∫ ∞
0

dz

(∫
dD̃L̂X(D̃)ezF̃D̃(X)Π(D̃|X)

)(∫
dD′L̂X(D′)Π(D′|X)

) (2.96)

This can be written as a linear response type relation

L̂(1)
X =

∫ ∞
0

dz ĈΠ(D̃|X)

L̂X(D̃)
(z) (2.97)

where ĈΠ(D̃|X)

L̂X(D̃)
(z) is the auto-correlation operator of L̂X(D̃) in the equilibrium distribution Π(D̃|X)
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(by analogy with auto-correlation function), i.e.,

ĈΠ(D̃|X)

L̂X(D̃)
(z) = ⟨L̂X(D̃z)L̂X(D̃0)⟩Π(D̃|X) − ⟨L̂X(D̃z)⟩Π(D̃|X)⟨L̂X(D̃0)⟩Π(D̃|X) (2.98)

Since the distribution Π(D̃|X) is stationary, we use ⟨L̂X(D̃z)⟩Π(D̃|X) = ⟨L̂X(D̃0)⟩Π(D̃|X) = L(0)
X

to write

ĈΠ(D̃|X)

L̂X(D̃)
(z) = ⟨L̂X(D̃z)L̂X(D̃0)⟩Π(D̃|X) − (L̂(0)

X )2 (2.99)

Similar to linear response theory, here we also see that in the presence of a small delay in feed-

back, the dynamics of the system is related to the auto-correlations of the operator LX(D̃) cal-

culated with the stationary control parameter distribution Π(D̃|X) at the fast feedback limit (i.e.,

when there is no delay).

2.5 Comparison with feedback-control equation for quantum and discrete stochas-

tic systems

2.5.1 Comparison with quantum Fokker-Planck master equation (QFPME)

In this section we compare the discussion presented so far for the classical case with the

original quantum Fokker-Planck master equation of continuous feedback control [1, 74]. For a

single realization of the experiment, the statistical state of the quantum system at discretized time

tk is given by a conditional density matrix ρ̂kc (tk), where the superscript k implies the density

matrix is conditioned on the measurement record Γ
(z)
k−1 similar to Eq. (2.13) for the classical

case.. In analogy with the Bayesian update rule shown in Eq. (2.14), the update equation for the
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quantum state due to an instantaneous measurement operation at time tk is given by,

ρ̂k+1
c (tk) = Mzk

[
ρ̂kc (tk)

]
=

K̂(zk)ρ̂
k
c (tk)K̂

†(zk)

Tr
{
K̂(zk)ρ̂k−1c (tk)K̂†(zk)

} (2.100)

Here, Mzk denotes a measurement operation that leads to outcome zk and K̂(zk) are correspond-

ing Kraus operators [78, 88]. In contrast to the classical case, which we considered to be back

action free, we consider a general case here with the possibility of back action due to measure-

ment. In the Gaussian weak measurement model [78], for a Hermitian operator Â =
∑

a |a⟩ξa⟨a|

corresponding to the observable of interest, the measurement Kraus operator is given as

K̂(z) =

(
2λδt

π

) 1
4

e−λδt(z−Â)
2

(2.101)

The probability density function of obtaining the outcome zk, given previous measurement records

Γ
(z)
k−1, is

ρ
(m)
tk

(zk|Γ(z)
k−1) = Tr

{
K̂(zk)ρ̂

k−1
c K̂†(zk)

}
=

(
2λδt

π

) 1
2 ∑

a

e−2λδt(zk−ξa)
2⟨a|ρ̂k−1c (tk)|a⟩

(2.102)

This equation is the analogue of Eq. (2.21) that we have obtained for the classical case. Similar

to the Kushner Equation (Eq. (2.30)) in the classical case, one can derive the Belavkin equation

(see Refs. [1, 61, 74, 78] for the derivation) for the quantum case as

dρ̂c(t) = dtL̂(D)ρ̂c(t) + λdtD[Â]ρ̂c(t) + dW (t)
√
λ{Â− ⟨Â⟩c, ρ̂c(t)} (2.103)
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where {X, Y } = XY + Y X is the anti-commutator, ⟨Â⟩c = Tr
{
Âρ̂c

}
, L̂(D) is the feedback-

controlled Lindbladian, and D[Â] is a dissipator in the eigenbasis of the operator Â. We note

that in Eq. (2.103), we have two terms that are proportional to dt. The first term on the r.h.s. of

the equation generates the Markovian dynamics of the system due to the Lindbladian L̂(D), the

second term λdtD[Â]ρ̂c generates decoherence in the basis of the observable Â. Thus the second

term creates a back-action due to measurement in the quantum state ρ̂c. Note that for the classical

case with purely Bayesian measurements [61], the back-action term is absent in the Eq. (2.30).

Now using the filtering Eq. (2.32) in the Belavkin equation (Eq. (2.103)), and following the same

steps discussed for the classical case, one can obtain the Quantum Fokker Planck Master Equation

[1]:

∂ρ̂t(D̃)

∂t
= L̂(D)ρ̂t(D̃) + λD[Â]ρ̂t(D̃) + F̂ ρ̂t(D̃), (2.104)

where F̂ is a superoperator form of the OU operator:

F̂ ρ̂(D̃) = −γ
2

∂

∂D̃
{Â− D̃, ρ̂(D̃)}+ γ2

8λ

∂2

∂D̃2
ρ̂(D̃) (2.105)

and the object ρ̂(D̃) is the joint state of the system and the control parameter. From ρ̂(D̃) we

obtain the state of the quantum system by marginalizing over the control parameter D̃,

ρ̂t =

∫
dD̃ ρ̂t(D̃), (2.106)

and the distribution of the control parameter D̃ at any time instant t, can be obtained as

pt(D̃) = Tr
{
ρ̂(D̃)

}
(2.107)
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Similar to the classical case, we can also perform a multiple-timescale analysis for the quantum

problem. This analysis can be performed directly with density matrices and superoperators (see

[74]) or alternatively, we cast the master equation into the Fock-Liouville space where superoper-

ators become matrices and perform the analysis in that space (see [1]). Similar to the Eq. (2.92),

it is possible to obtain a Markovian master equation for the quantum state in the limit of separa-

tion of time-scales of the system dynamics and the controller dynamics. If the fastest time-scale

of the system and the measurement back action is given by (1/Γ), then we define ϵ = (Γ/γ) and

get the Markovian master equation,

ρ̂t = (L̂(0) + ϵL̂(1))ρ̂t (2.108)

where the superoperator L̂(0) is defined as

L̂(0)ρ̂t =

∫
dD̃L̂(D)

∑
aa′

|a⟩Π(D̃|a, a′)⟨a|ρ̂t|a′⟩⟨a′| (2.109)

with Π(D̃|a, a′) is defined similar to Eq. (2.60) as

Π(D̃|a, a′) =

√
4λ

πγ
exp

[
−4λ

γ

(
D̃ − ξa + ξa′

2

)2
]
. (2.110)

The superoperator L̂(1) is defined as

L̂(1)ρ̂t = −
∫

dD̃L(D̃) ˆ̃F+L(D̃)
∑
aa′

|a⟩Π(D̃|a, a′)⟨a|ρ̂t|a′⟩⟨a′| (2.111)
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where the superoperator ˆ̃F = Γ
γ
F̂ and

ˆ̃F+ = −
∫ ∞
0

dz ez
ˆ̃FQ̂ ˆ̃F (2.112)

2.5.2 Comparison with feedback-control master equation for classical discrete-

state stochastic dynamics

One can obtain the feedback control equation for a classical discrete state process as a spe-

cial case of the Quantum Fokker Planck Master Equation (Eq. (2.104)) when the dynamics of the

populations are uncoupled from the dynamics of the coherence (see the supplemental of Ref. [1]).

Alternatively, one can consider a classical, discrete-state, continuous-time Markov jump process

under feedback control and follow the steps used for the continuous case to derive a similar master

equation for the feedback control. In this case the statistical state of the system state and the con-

troller state is described by a probability distribution column vector P⃗ (D̃, t) = [Pi(D̃, t)]
T
i=1,..,N

where the probability distribution of the system state is obtained by marginalization

P⃗ (t) =

∫
dD̃P⃗ (D̃, t) (2.113)

and the distribution of the controller state D̃ is given by

p(D̃) =
N∑
i=1

Pi(D̃, t) (2.114)

We consider a measurement of an observable O that gives the value O(i) = ξi when the system

is in the state i. If the system dynamics are governed by the rate matrix R(D̃), then the master
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equation reads

∂

∂t
P⃗ (D̃, t) = R(D̃)P⃗ (D̃, t) + F̂ P⃗ (D̃, t) (2.115)

where F̂ is a diagonal matrix of OU operators:

F̂ij = δij

[
γ
∂

∂D̃

(
D̃ − ξi

)
+
γ2

8λ

∂2

∂D̃2

]
(2.116)

Now if the dynamics generated by R(D̃) are of the order (1/Γ), then the Markovian master

equation for P⃗ (t) up to the first order of ϵ = Γ
γ

can be written as

∂

∂t
P⃗ (t) = (R0 + ϵR1)P⃗ (t) (2.117)

where

R0 =

∫
dD̃R(D̃)Π(D̃) (2.118)

and Π(D̃) is a diagonal matrix with elements defined as

Πij(D̃) = δij

√
4λ

πγ
exp

[
−4λ

γ

(
D̃ − ξi

)2]
. (2.119)

The matrix R1 is defined as

R1 = −
∫

dD̃R(D̃) ˆ̃F+R(D̃)Π(D̃) (2.120)
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Here the elements of the matrix ˆ̃F+ are defined as

ˆ̃F+
ij = −δij

∫ ∞
0

dz ez
ˆ̃FijQ̂ ˆ̃Fij

(2.121)

where ˆ̃F = Γ
γ
F̂ .
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Chapter 3: A classical two-state toy model of feedback-controlled information

engine

This chapter is based on work done in collaboration with Björn Annby-Andersson, Phar-

nam Bakhshinezhad, Guilherme De Sousa, Christopher Jarzynski, Peter Samuelsson, and Patrick

P. Potts, which has been published as “Quantum Fokker-Planck Master Equation for Continuous

Feedback Control” in Ref. [1]. Guilherme De Sousa and I worked together on the multiple-

timescale perturbation (MTSP) based analysis of the classical toy model of Ref. [1]. In this

chapter we analyze this model using classical stochastic modelling and MTSP methods and show

the results. This model can also be analyzed using full-counting statistics (FCS) methods as

shown in Ref. [1, 74]. At the end of this chapter, in Appendix 3.5, we relate the constants arising

in our MTSP calculation with those arising in the FCS method to show the equivalence of the

results.

3.1 Chapter overview

In this chapter, we discuss a simple toy model of a classical information engine, which

can be considered as a non-autonomous Maxwell’s demon and we use the methodologies de-

veloped in the last chapter to analyze the model when measurement error and feedback-delay

are present. A key purpose of this chapter is to illustrate an application of the feedback-control
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Figure 3.1: Schematic diagram of the classical two-state toy model of an information engine.
The two states are labeled as |0⟩ and |1⟩. The agent (demon) makes continuous measurements
(denoted by the magnifying glass in the figure) on the two-state system to learn whether the
system is in the state |0⟩ or the state|1⟩. The ground state and excited state energies of the system
are Eg and Ee with Ee − Eg = ∆ > 0. When the system absorbs heat Qin = ∆ from the
heat reservoir (depicted by the sun in the schematic diagram) to go to the excited state, the agent
instantly provides feedback (denoted by the trident) by switching the levels |0⟩ (|1⟩) → |1⟩ (|0⟩).
In this process the agent takes the system from excited state energy Ee to the ground state energy
Eg and extracts work Wext = ∆, which is stored in a work reservoir (depicted by the battery in
the schematic diagram). After this, the demon repeats the process cyclically (see Fig. 3.2)
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master equation and perturbation results developed in the previous chapter.

Sec. 3.2 of this chapter discusses physical setup and modelling of the system. Then the ideal

protocol for the operation of the demon is explained. Next, we consider a feedback-resolved

model for the imperfect protocol in which measurement error and feedback-delay are present.

This imperfect demon is modeled using the framework presented in Chapter 2 for the classical

discrete-state stochastic system with continuous measurement and feedback.

In section 3.3, we analyze of the feedback-resolved model. We use the feedback control

master equation for a continuously monitored classical discrete state stochastic system (see 2.5.2)

and corresponding multiple time scale perturbation results to solve for the steady state probability

distributions of the feedback-resolved model. Then we coarse-grain the feedback-resolved model

to calculate the average steady state work extraction rate in the presence of measurement error and

feedback lag. We see that the system can act either as an information engine or as a dissipator

when measurement errors are present. Then we analyze two limiting scenarios of the model

corresponding to the cases of fast feedback with inaccurate measurement, and lagging feedback

with accurate measurement.

3.2 Physical setup and stochastic modelling

We consider a two-state system that is weakly coupled to a thermal bath at temperature

T (or at inverse temperature β = 1/kBT , with kB as Boltzmann’s constant). The system can

exchange heat from the thermal bath to go from the ground state to the excited state or vice-

versa. This system is continuously being monitored by an external agent (or demon). First we

consider an idealized feedback protocol, where the measurement process is accurate and there is
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no delay in the response to the measurement. In this protocol, the agent instantaneously changes

the energy level configuration of the two-state system, whenever the system absorbs heat from

the bath (see Fig. 3.1). When changing the energy level configuration, the agent takes the system

from the excited state to ground state and extracts work in the process. This protocol is repeated

in a cyclic fashion. Thus, in this cyclic protocol, the agent rectifies thermal fluctuations from

the heat bath and directly converts them to work using continuous measurement and feedback.

Hence, this protocol can be considered as a toy system of an information engine. Since we

have an explicit consideration of an external agent doing the measurement and feedback, this

setup represents a non-autonomous Maxwell’s demon. Such two-state information engines are

ubiquitous in the stochastic and information-thermodynamics literature and similar toy models

can also be found in Refs. [27, 89, 90].

3.2.1 Stochastic modelling

To create a stochastic model of the protocol, we assign labels |0⟩ and |1⟩ to the system’s

states (in the spirit of a quantum two-level model) and denote their energies by E0 and E1 re-

spectively. We also define the ground state and excited state energy of the system as Eg and Ee

with Ee −Eg = ∆ > 0. The two possible energy level configurations (energy landscapes) of the

system are denoted as the ‘(−)’ configuration: (E0 = Eg, E1 = Ee) and the ‘(+)’ configuration:

(E1 = Eg, E0 = Ee) and we suggestively write them as the Hamiltonians Ĥ− and Ĥ+ (see Fig.

3.2):

Ĥ− = Eg|0⟩⟨0|+ Ee|1⟩⟨1|, (3.1)

Ĥ+ = Ee|0⟩⟨0|+ Eg|1⟩⟨1|. (3.2)
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The demon makes measurements on the state of the system and then provides feedback by chang-

ing the energy landscape of the system. Hence both the state of the system and the energy level

configurations, are dynamical quantities. The complete description of the system is provided by

specifying the joint state of the system –the system state (|0⟩ or |1⟩) and energy level configuration

(Ĥ− or Ĥ+) together. Thus, there are four possible joint states of the system: (0,−), (0,+), (1,−)

and (1,+). Here the first entry of the tuple refers to the system state and the second entry to the

energy level configuration. For example, (0,−) implies the system is in state |0⟩ and the energy

level configuration is given by the Hamiltonian Ĥ−. The energies corresponding to these joint

states are E(0,−) = Eg, E(0,+) = Ee, E(1,−) = Ee, and E(1,+) = Eg.

We assume the system is weakly coupled to a thermal bath of inverse temperature β. For

thermodynamic consistency, the transitions between the states |0⟩ ↔ |1⟩ at any of the energy level

configurations (Ĥ− or Ĥ+) must follow local detailed balance. We denote the transition rate for

|0⟩ → |1⟩ (|1⟩ → |0⟩) under the energy level configuration Ĥ− as R(−)
10 (R

(−)
01 ) and similarly for

the energy level configuration Ĥ+ as R(+)
10 (R

(+)
01 ) (see Fig. 3.2). Then the local detailed balance

relations are

R
(−)
10

R
(−)
01

= e−β(E(1,−)−E(0,−)) = e−β(Ee−Eg) = e−β∆, (3.3)

R
(+)
10

R
(+)
01

= e−β(E(1,+)−E(0,+)) = e−β(Eg−Ee) = e+β∆, (3.4)

Eqs. (3.3) and (3.4) only define the ratios of the transition rates but do not completely specify

them. We model the thermal bath as a weakly coupled bosonic bath with which the two-state

system exchanges the quantum of energy ∆. The coupling constant of the system with the bath is

given as Γ, which defines the natural timescale (1/Γ) of the dynamics due to bath coupling. We
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denote the average number of bosons of energy ∆ at inverse temperature β as

nB =
1

eβ∆ − 1
(3.5)

which is the Bose-Einstein distribution function. Now we fix the transition rates as

R
(−)
01 = Γ(nB + 1), R

(−)
10 = ΓnB; (3.6)

R
(+)
01 = ΓnB, R

(−)
10 = Γ(nB + 1). (3.7)

These rates satisfy the detailed balance relations presented in Eqs. (3.3), (3.4).

3.2.2 Idealized feedback protocol

In the ideal protocol the agent (demon) continuously monitors state of the system by mak-

ing measurements in the basis of {|0⟩ , |1⟩} with the observable σ̂z = (−1)|0⟩⟨0| + (+1)|1⟩⟨1|,

which implies that an error-free measurement will give the outcome ξ0 = −1 for the state |0⟩,

and ξ1 = +1 for the state |1⟩. Based on the measurement outcome, the agent provides feedback

by changing the energy level configuration of the two-state system. The protocol starts with the

system in state |0⟩ and the energy level configuration in Ĥ−. Thus, the joint state of the system

is (0,−) (see Fig. 3.2) and the corresponding energy is E(0,−) = Eg. Now due to interaction

with the weakly coupled thermal bath, the system absorbs heat Q(1)
in = ∆, and goes from |0⟩ to

|1⟩ with the energy level configuration still at Ĥ−. After this transition, the system state is |1⟩,

and the energy configuration is Ĥ− , i.e., the joint state is (1,−) and the corresponding energy is

E(1,−) = Ee. As soon as there is an excitation of the system (i.e., the measurement outcome of
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Figure 3.2: Stochastic model for the two state information engine. The graph G and the corre-
sponding joint states of the systems are shown here. Beside every every node of G the correspond-
ing physical system is depicted in the boxes. The desired behavior (information engine mode)
of the protocol corresponds to counter-clockwise cycle C in the network G shown above. The
transitions (0,−) ↔ (1,−) and (0,+) ↔ (1,+) correspond to excitation and de-excitation of
the system due to interactions with the thermal reservoir (depicted by the sun). The correspond-
ing transition rates from Eqs. (3.4) and Eq. (3.3) are shown shown by the arrows between the
physical pictures of the joint states. The transitions (0,−) ↔ (0,+) and (1,−) ↔ (1,+) corre-
spond to feedback steps (denoted by the trident) and involves interaction with the work reservoir
(battery). For the feedback-resolved model, the feedback Hamiltonian H(D) from Eq. (3.8) is
represented here by showing the control parameter (D) below the corresponding joint states. The
grey colored states (1,−) and (0,+) show the situations when the control parameterD(t) (which
is a filtered form measurement signal z(t)) fails to capture the actual state of the system, whereas
white colored states (0,−) and (1,+) are the situation when the actual state of the system is
captured by the control parameter D(t).
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σ̂z changes from −1 to +1), the agent provides instantaneous feedback to switch the energy level

configuration from Ĥ− to Ĥ+. By doing this the demon extracts work W (1)
ext = ∆, as the system

at the state |1⟩ is taken from Ee to Eg. After the feedback step by the demon, the joint state is

given as (1,+) with energy E(1,+) = Eg. Now a similar sequence is repeated, with the setup

going from (1,+) to (0,+) by absorbing heat Q(2)
in = ∆, and thus we have E(0,+) = Ee. Then

the demon applies instantaneous feedback by switching the levels, and taking the joint state of

the system from (0,+) to (0,−) while extracting work W (2)
ext = ∆. After this sequence of steps

the system and the energy level configuration both are restored to their initial states: (0,−). We

represent this as the cyclic protocol C : (0,−) −→ (1,−) =⇒ (1,+) −→ (0,+) =⇒ (0,−);

where ‘−→’ signifies a thermal excitation step and ‘=⇒’ signifies an instantaneous feedback.

The cycle C corresponds to traversing the network shown in Fig. 3.2 in the counter-clockwise

(CCW) direction. In one cycle of C, in total Qcycle
in = Q

(1)
in + Q

(2)
in = 2∆ heat has been extracted

from the heat reservoir and completely converted to work W cycle
ext = W

(1)
ext +W

(2)
ext = 2∆. In the

ideal feedback limit the system spends almost no time at states (1,−) and (0,+). Hence, these

two states act as transients (shown as grey circles in Fig. 3.2) for the transitions between two

stable states (0,−) and (1,+) (shown as white circles in Fig. 3.2).

3.2.3 Imperfect feedback protocol: the feedback-resolved model

Now we consider the situation where the agent makes measurement errors due to an im-

perfect measurement device and also there is a finite bandwidth of detection, implying that the

feedback response lags behind the actual state of the system. In this situation, the directed nature

of the cycle C is lost because of the possibility of thermal de-excitation and incorrect feedback
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due to finite bandwidth and measurement errors. The system can now spend finite time in the

states (1,−) and (0,+) and also can return the states (0,−) and (1,+) against the direction of

the desired protocol in C. Hence, the system executes stochastic dynamics on the corresponding

graph with bi-directional edges G : (0,−) ↔ (1,−) ↔ (1,+) ↔ (0,+) ↔ (0,−) as shown in

the Fig. 3.2.

To model such system, we introduce a ‘feedback-resolved’ model where the change in

the energy level configuration takes place through a continuous control parameter D ∈ R. We

consider that the energy level configuration of the system is described by the threshold feedback

[1] Hamiltonian Ĥ(D):

Ĥ(D) = (1− θ(D))Ĥ− + θ(D)Ĥ+ (3.8)

where D is the control parameter and θ(D) is the Heaviside step function. At any time t, the

value of the control parameter D(t) is calculated as the low-pass filtered (with a smoothing rate

or bandwidth γ) version of the continuous measurement signal z(t) (see Eq. (2.32) and other

details in Sec: 2.3.1)

D(t) =

∫ t

−∞
dsγe−γ(t−s)z(s). (3.9)

Thus, 1/γ is the natural time-scale for the evolution of the control parameter. To obtain the

measurement signal z(t), the agent measures the observable σ̂z. We assume that the measurement

signal z(t) is generated through an imperfect continuous measurement device that follows the

Gaussian measurement model (see Sec: 2.2.4):

ρ(z| |i⟩) =
√

2λδt

π
e−2λδt(z−ξi)

2

, i ∈ {0, 1}, (3.10)
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where λ is the measurement strength.

Since the feedback Hamiltonian Ĥ(D) depends on the control parameter D, the transition

rates between |0⟩ and |1⟩ are also dependent on D. Similar to Eq. (3.8), we define a threshold

feedback rate matrix R(D) using Eq. (3.6) and Eq. (3.7) as

R(D) = (1− θ(D))R(−) + θ(D)R(+), (3.11)

R(−) = Γ

−nB (nB + 1)

nB −(nB + 1)

 , R(+) = Γ

−(nB + 1) nB

(nB + 1) −nB

 (3.12)

to describe the control parameter dependent transition rates between |0⟩ ↔ |1⟩. At any time t, the

probability of the system being in state |0⟩ (|1⟩) and the control parameter at the value D is given

by the joint distribution function P0(1)(D, t). Following the discussion in Sec. 2.5.2 of Chapter 2,

we describe the master equation for the joint statistical state of the system and control parameter

P⃗ (D, t) = [P0(D, t), P1(D, t)]
T for the feedback-resolved model as

∂

∂t
P⃗ (D, t) = R(D)P⃗ (D, t) + F̂ P⃗ (D, t) (3.13)

where F̂ is a diagonal matrix of OU operators:

F̂ij = δij

[
γ
∂

∂D
(D − ξi) +

γ2

8λ

∂2

∂D2

]
(3.14)

Now from this feedback-resolved model, we can obtain a coarse-grained description of the model

by integrating the control parameter D in appropriate domains to obtain the probability vectors
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of system state corresponding to Ĥ− and (Ĥ+) energy level configurations:

P(0,−)

P(1,−)

 =

∫
dD(1− θ(D))P⃗ (D, t);

P(0,+)

P(1,+)

 =

∫
dDθ(D)P⃗ (D, t); (3.15)

3.3 Analytical treatment of the model

In this section, we present an analytical treatment of the model in the multiple time scale

approach with the smallness parameter ϵ = (Γ/γ) using the results from the Chapter 2. We

discuss the analytical expression of the steady state work extraction rate both in strong separation

of timescales (0th order approximation) limit when ϵ → 0, and then also discuss the corrections

to in the first order. From the 0th order expression of power we discuss the criteria for information

engine operation mode vs. the dissipator operation mode. Then we discuss the power production

in another limiting case when the feedback delay is captured up to the 1st order in ϵ but the

measurement strength (accuracy) is infinite.

3.3.1 Steady state power calculation

We calculate the average steady state work extraction rate or power as ⟨Ẇ ss
ext⟩ = (2∆)Jss,

where Jss is the stationary current in the graph G along the direction of the desired protocol C,

i.e. in the CCW direction. Since there is only one cycle in the graph G, the current across all

the edges of G are same (Jss) due to conservation of probability. Thus, we can calculate the

stationary current (or power) from any edge. We choose to calculate the current from (1,+) to
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(0,+) across the edge (1,+) ↔ (0,+). Hence we have,

⟨Ẇ ss
ext⟩ = 2∆Jss

= 2∆J(0,+)←(1,+)

= 2∆
[
R

(+)
01 P

ss
(1,+) −R

(+)
10 P

ss
(0,+)

] (3.16)

Next, we discuss how to obtain expressions for P ss
(1,+) and P ss

(0,+), that are required for the power

calculation by Eq. (3.16). Using the MTSP method (see Appendix. 3.4) we obtain the steady

state solution to Eq. (3.13) as,

P⃗ ss(D) =
1

2

Π00(D)

Π11(D)

+ ϵ

 ˆ̃F+
00h(D)

− ˆ̃F+
11h(D)

+O(ϵ2) (3.17)

where Π00(11)(D) is a Gaussian distribution located at −1(+1) with variance γ/8λ:

Πii(D) =

√
4λ

γπ
exp

[
−4λ

γ
(D − ξi)

2

]
(3.18)

The function h(D) is given as

h(D) =
1

2
[R10(D)Π00(D)−R01(D)Π11(D))] . (3.19)

The operators ˆ̃F+
ii are the Drazin inverse [63, 87] of the scaled OU operator ˆ̃Fii = (Γ/γ)F̂ii, and

is defined in Eq. (2.121) in Chapter. 2 (also discussed in the Appendix. 3.5.2). The expressions

for ˆ̃F+
00h(D) and ˆ̃F+

11h(D) can be calculated using the eigenfunctions of ˆ̃Fii which are presented

in the Appendix. 3.5.1.
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From Eq.(3.17) and Eq. 3.18, we see that, even in the fast feedback ϵ → 0 limit, the

distributions P ss
0(1)(D) = 1

2
Π00(11)(D) will have some spread in the control parameter space D

due to error in the measurement process (i.e., due to finite value of λ/γ). Hence there is a finite

probability of the wrong feedback being applied, characterized by the error probability η, given

in Eq. (3.28) of Appendix 3.4, which represents the stationary state probability of finding the

control parameter D in the wrong feedback regime for a given system state (|0⟩ or |1⟩).

Using Eq. (3.15) and (3.16), Eq. (3.17) we can obtain the expression of Ẇ ss
ext, which we

write as a power series in ϵ:

⟨Ẇ ss
ext⟩ = ⟨Ẇ ss,[0]

ext ⟩+ ϵ⟨Ẇ ss,[1]
ext ⟩+O(ϵ2), (3.20)

where, the 0th-order expression of the power is given as ⟨Ẇ ss,[0]
ext ⟩

⟨Ẇ ss,[0]
ext ⟩ = ∆Γ [nB(1− η)− (nB + 1)η] , (3.21)

Notice that even the 0th-order expression of power contains the error probability η. For the

accurate measurement limit (η → 0) we get the maximum value of Ẇ ss,[0]
ext as ∆ΓnB. Eq. 3.21

implies any nonzero error probability η reduces the power from it due to feedback mistakes. For

a fixed ∆ and Γ the maximum power production is controlled by the average number of bosons

(nB) of energy ∆ in the bath which decreases with decreasing temperature (increasing β). Thus

we see (Ẇ
ss,[0]
ext )/Γ∆ decreases with β∆ as seen in Fig. 3.3.

From Eq. (3.20) we see that the first-order correction to the steady state work extraction
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rate is ϵ⟨Ẇ ss,[1]
ext ⟩, where

⟨Ẇ ss,[1]
ext ⟩ = −2∆

[
nB

∫ ∞
−∞

dD θ(D) ˆ̃F+
11h(D) + (nB + 1)

∫ ∞
−∞

dD θ(D) ˆ̃F+
00h(D)

]
= −∆Γ [(2nB + 1)(m+ z + knB)] ,

(3.22)

and m, z and k are dimensionless parameters with defined by Eqs.(3.32), (3.33), (3.34) and the

expressions given in Eqs. (3.58), (3.66), (3.74). See Appendix. 3.5 for details of the calculation

of these constants. Thus using Eqs. (3.20), (3.21), (3.22), we write the power, including the

first-order correction due to finite bandwidth effect (feedback delay effect), as

⟨Ẇ ss
ext⟩ = ∆Γ [nB(1− η)− (nB + 1)η]− γ−1∆Γ2 [(2nB + 1)(m+ z + knB)] (3.23)

3.3.2 Thermodynamic operation modes: dissipator vs. information engine

Since the system under consideration interacts with a single heat bath, the first law of

thermodynamics at steady state is given as

⟨Q̇ss
in⟩ = ⟨Ẇ ss

ext⟩ (3.24)

where ⟨Q̇ss
in⟩ is the average heat intake rate from the thermal reservoir at steady state, and ⟨Ẇ ss

ext⟩

is the average work extraction rate at steady state. Now if ⟨Ẇ ss
ext⟩ > 0, the agent is directly

converting heat from the thermal reservoir to work by measurement and feedback, thus it is

acting as a Maxwell’s demon or information engine. Whereas if ⟨Ẇ ss
ext⟩ < 0, the performs work

on the system, which is converted to heat and is dissipated to the reservoir. Thus in this case

74



1 2 3 4 5 6
β∆

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

λ
/
γ

〈
Ẇss

ext

〉
/∆Γ,  Fast feedback

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.3: Steady state work extraction rate for the two state toy model in the fast feedback limit
(ϵ ≈ 0). The vertical axis of the plots represent the ratio λ/γ. The horizontal axis of the plots
represent β∆. The figure above shows values of ⟨Ẇ ss

ext⟩/Γ∆, (see Eq. (3.21)) i.e., steady state
work extraction by the agent in the fast feedback limit, scaled by the factor Γ∆.

the overall setup is acting as a dissipator where the work, a useful thermodynamic resource, is

getting converted to thermal fluctuations, i.e. it is being wasted. The dissipator behavior of the

system arises due to the imperfect nature of measurement-feedback by the demon.

3.3.3 Criteria for information engine mode in fast feedback limit (ϵ ≈ 0)

In the fast feedback limit (γ ≫ Γ or ϵ ≪ 1), we approximate ϵ ≈ 0 in the expression for

⟨Ẇ ss
ext⟩ in Eq.(3.20), we can write the criterion for the information engine operational mode of

the model ⟨Ẇ ss
ext⟩ ≈ ⟨Ẇ ss,[0]

ext ⟩ > 0 as :

η < η∗ =
nB

2nB + 1
=

e−β∆

e−β∆ + 1
(3.25)
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Figure 3.4: Operation mode phase diagram in fast feedback limit. The figure shows the sign
of ⟨Ẇ ss

ext⟩ from Fig. 3.3. For the information engine region we have ⟨Ẇ ss
ext⟩ > 0 and for the

dissipator mode we have ⟨Ẇ ss
ext⟩ < 0. The separation between these two operation modes are

captured by the critical ratio r∗fast (see Eq. (3.26)).

where η∗ the critical error probability of feedback (in the fast-feedback limit) that leads to a

change in the operational mode from information engine to dissipator once crossed. Note that

η is a monotonically decreasing function of the ratio of measurement strength and feedback

bandwidth (λ/γ) (see Eq. (3.29)). Thus the criteria for the information engine operation mode

(for ϵ ≈ 0 limit) in Eq (3.25) can also be expressed as

λ

γ
> r∗fast =

1

4

[
erfc−1(2η∗)

]2
=

1

4

[
erfc−1

(
2e−β∆

e−β∆ + 1

)]2
(3.26)

where r∗fast depends on the inverse temperature of the bath β and the energy gap of the two state

model ∆ and erfc−1 stands for the inverse of the co-error function [91]. Hence for (λ/γ) >

r∗fast we get the information engine operation mode and, for (λ/γ) < r∗fast we get dissipator
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operation mode. The variation of of r∗fast with β∆ is shown in the Fig. 3.4, where r∗fast creates

a boundary between the information engine and dissipator regime which can be understood as

follows. For a fixed ∆ with increasing β (decreasing temperature) Ẇ ss,[0]
ext decreases (due to

decreasing nB). Hence feedback errors become more costly with increasing β, and more accuracy

(stronger measurements) are required to compensate for the decrease in power production to

achieve the information engine regime. This leads to the increasing nature of r∗fast with β∆ in the

Fig. 3.4.

3.3.4 Steady state power in strong measurement (λ≫ γ) but lagging controller

(ϵ ̸= 0)

When λ ≫ γ, limit the error probability becomes extremely small (η ≈ 0) since the

distribution Π00(11)(D) is sharply peaked at its mean −1(+1), as reflected in Eq. (3.29). In this

limit, we have θ(D)Π00(D) ≈ 0 and ϕ(D)Π11(D) ≈ 0, which imply m ≈ 0 and z ≈ 0 from

Eq. (3.32) and Eq. (3.33). It can also be shown that in this limit k ≈ ln 2 (see Appendix. 3.5.4).

Thus in this limit the average work extraction is

⟨Ẇ ss
ext⟩ = ΓnB∆ [1− ϵ(2nB + 1) ln 2] (3.27)

Thus the lag of the control parameter with respect to system dynamics causes a decrease in the

steady-state average work extraction.
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3.4 Appendix: MTSP solution for steady states

Here we discuss the steady state solution to Eq. (3.13) in the separation of time scales limit

following the results shown in Sec. 2.5.2 of Chapter 2. For convenience we define ϕ(D) =

1− θ(D), and using the expression of Πij from Eq. (3.18) define the error probability η as

η =

∫ ∞
−∞

dDθ(D)Π00(D)

=

∫ ∞
−∞

dDϕ(D)Π11(D)

(3.28)

which can be written as

η =
1

2

[
1− erf

(√
4λ

γ

)]
(3.29)

Now we solve for the 0th order effective rate matrix R0 from Eq. (2.118) as

R0 =

∫
dDR(D)Π(D) = Γ(nB + η)

−1 1

1 −1

 , (3.30)

and for the 1st order effective rate matrix R1, using Eq. (2.120) we get,

R1 = −
∫

dDR(D) ˆ̃F+R(D)Π(D) = Γ(m− z − knB)

−1 1

1 −1

 , (3.31)

78



where,m, z and k are dimensionless parameters that are determined by the ratio λ/γ and formally

can be written as

m = Γ

∫ ∞
−∞

dDθ(D) ˆ̃F+
00θ(D)Π00(D) = Γ

∫ ∞
−∞

dDϕ(D) ˆ̃F+
11ϕ(D)Π11(D) (3.32)

z = Γ

∫ ∞
−∞

dDθ(D) ˆ̃F+
11θ(D)Π00(D) = Γ

∫ ∞
−∞

dDϕ(D) ˆ̃F+
00ϕ(D)Π11(D) (3.33)

k = Γ

∫ ∞
−∞

dDθ(D) ˆ̃F+
11Π00(D) = Γ

∫ ∞
−∞

dDϕ(D) ˆ̃F+
00Π11(D) (3.34)

Now we define marginal distribution of the states of the two-state system when the control pa-

rameter D is integrated out as P⃗ (t) = [P0(t), P1(t)]
T , and assume that it can be expressed as a

series
∑∞

k=0 ϵ
kP⃗ (k)(t). Then the equations for the P⃗ (0)(t) and P⃗ (1)(t) are given as

dP⃗ (0)(t)

dt
= R0P⃗

(0)(t) (3.35)

dP⃗ (1)(t)

dt
= R0P⃗

(1)(t) + ϵR1P⃗
(0)(t) (3.36)

Solving these for the steady-state solution with the normalization conditions P (0)
0 (t)+P

(0)
1 (t) = 1

and P (1)
0 (t) + P

(1)
1 (t) = 0, we get

P⃗ ss,(0) =

1/2

1/2

 ; P⃗ ss,(1) =

0

0

 . (3.37)

Thus we have P⃗ ss = [1/2, 1/2]T +O(ϵ2), which implies the distribution of |0⟩ and |1⟩ remains

the same in the steady state, which is expected from the symmetry of the problem. Using the
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expression of P⃗ ss, we write the steady state joint system-controller distribution as,

P⃗ ss(D) = Π(D)P⃗ ss − ϵ ˆ̃F+R(D)Π(D)P⃗ ss +O(ϵ2) (3.38)

where Π(D) = diag ([Π00(D),Π11(D)]) and ˆ̃F+ = diag
([

ˆ̃F+
00(D), ˆ̃F+

11(D)
])

. The equation

above can also be written in the form presented in Eq. (3.17).

3.5 Appendix: Evaluation of the dimensionless parameters (m, z, k) arising in

first order perturbation scheme

3.5.1 Eigenspectrum of Fokker-Planck operator for Ornstein–Uhlenbeck (OU)

process

We denote the nth eigenvalue of the OU operator ˆ̃Fii as λ(i)n and the corresponding right

eignevector as |λ(i)n ⟩ ≡ ϕ
(i)
n (D) and the left eigenvector as ⟨λ(i)n | ≡ ϕ̃

(i)
n (D). Where we have

ˆ̃Fii|λ(i)n ⟩ ≡
[
Γ∂D(D − ξi) +

γΓ

8λ
∂2D

]
ϕ(i)
n (D) = λ(i)n ϕ

(i)
n (D) ≡ λ(i)n |λ(i)n ⟩, (3.39)

⟨λ(i)n | ˆ̃Fii ≡
[
−Γ(D − ξi)∂D +

γΓ

8λ
∂2D

]
ϕ̃(i)
n (D) = λ(i)n ϕ̃

(i)
n (D) ≡ ⟨λ(i)n |λ(i)n . (3.40)

The eigenvalue and eigenfunctions[67] are given as

λ(i)n = −nΓ, n = 0, 1, 2, 3, ... (3.41)
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|λ(i)n ⟩ ≡ ϕ(i)
n (D) =

1

2nn!
Hn

[√
4λ

γ
(D − ξi)

]
Πii(D)

=
1

2nn!

√
4λ

γπ
Hn

[√
4λ

γ
(D − ξi)

]
e[−

4λ
γ
(D−ξi)2],

(3.42)

⟨λ(i)n | ≡ ϕ̃(i)
n (D) = Hn

[√
4λ

γ
(D − ξi)

]
(3.43)

. where, Hn is the Hermite polynomial [92] of order n. If we define the inner-product between

two functions as ⟨f |g⟩ =
∫
dDf(D)g(D), then we have a bi-orthogonality relation among the

eigenfunctions of the OU operator ˆ̃Fii:

⟨λ(i)m |λ(i)n ⟩ = δmn. (3.44)

We now define the null space projector of the operator ˆ̃Fii as

P̂ ˆ̃Fii
= |λ(i)0 ⟩⟨λ(i)0 | ≡ Πii(D)

∫
dD(∗) (3.45)

and, for convenience, we define a dimensionless quantity

α =
4λ

γ
. (3.46)

The projector outside the null-space can be written as

Q̂ ˆ̃Fii
=
∞∑
n=1

|λ(i)n ⟩⟨λ(i)n | ≡ Πii(D)
∞∑
n=1

1

2nn!
Hn

[√
α(D − ξi)

] ∫
dD′Hn

[√
α(D′ − ξi)

]
(∗)

(3.47)
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and P̂ ˆ̃Fii
and Q̂ ˆ̃Fii

sum to identity operator

P̂ ˆ̃Fii
+ Q̂ ˆ̃Fii

= 1̂ (3.48)

3.5.2 Evaluating integrals containing Drazin inverses

To evaluate the constants m, z and k, we will evaluate integrals of the form

∫ ∞
−∞

dDf(D) ˆ̃F+
ii g(D) ≡ ⟨f | ˆ̃F+

ii |g⟩ (3.49)

where the pseudo-inverse operator is

ˆ̃F+
ii = −

∫ ∞
0

dzez
ˆ̃FiiQ̂ ˆ̃Fii

(3.50)

Now using the eigenfunction expansion of the operator ˆ̃F+
ii we write

⟨f | ˆ̃F+
ii |g⟩ = −

∞∑
n=1

∫ ∞
0

dz⟨f |ez
ˆ̃Fii|λ(i)n ⟩⟨λ(i)n |g⟩

= −
∞∑
n=1

∫ ∞
0

dze−nΓz⟨f |λ(i)n ⟩⟨λ(i)n |g⟩

= −
(
1

Γ

) ∞∑
n=1

(
1

n

)
⟨f |λ(i)n ⟩⟨λ(i)n |g⟩

(3.51)
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Expressing the inner-products as integrals we get,

∫ ∞
−∞

dDf(D) ˆ̃F+
ii g(D) = −

(
1

Γ

) ∞∑
n=1

(
1

n

)[∫ ∞
−∞

dDf(D)ϕ(i)
n (D)

] [∫ ∞
−∞

dD′ϕ̃(i)
n (D′)g(D′)

]
(3.52)

3.5.3 Series expansion expressions for m, z and k

We now obtain series sum expressions for the dimensionless constants m, z and k. These

series sum expressions can be used to evaluate the constants m, z and k to desired accuracy. We

also relate these constants to three other constants, C0, C1 and C2, that arises in the Full Counting

Statistics (FCS) based analysis of this model as given in Ref. [1, 74].

3.5.3.1 Expression for m

Using Eq. (3.32), we write

m = Γ

∫ ∞
−∞

dDθ(D) ˆ̃F+
00θ(D)Π00(D) (3.53)

then using Eq. (3.52) we get

m = −
∞∑
n=1

(
1

n

)[∫ ∞
−∞

dDθ(D)ϕ(0)
n (D)

] [∫ ∞
−∞

dD′ϕ̃(0)
n (D′)θ(D′)Π00(D

′)

]

= −
∞∑
n=1

(
1

n

)
1

2nn!

[∫ ∞
0

dDHn

[√
α(D + 1)

]
Π00(D)

] [∫ ∞
0

dD′Hn

[√
α(D′ + 1)

]
Π00(D

′)

]

= −
∞∑
n=1

(
1

n

)
1

2nn!

(α
π

)[∫ ∞
0

dDHn

[√
α(D + 1)

]
e−α(D+1)2

]2
(3.54)
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Now substituting y =
√
α(D + 1) we get,

m = −
∞∑
n=1

(
1

n

)
1

2nn!

(
1

π

)[∫ ∞
0

dyHn [y] e
−y2 −

∫ √α
0

dyHn [y] e
−y2
]2

(3.55)

Finally, using the Hermite indefinite integration formula (see Ref. [91])

∫ x

0

dyHn [y] e
−y2 = Hn−1(0)− e−x

2

Hn−1[x] (3.56)

we obtain the expression of m as

m = −
∞∑
n=1

(
1

n

)
1

2nn!

(
1

π

)
e−2αH2

n−1[
√
α] (3.57)

changing the sum index k = n− 1, and replacing α = (4λ/γ) we write

m = −e
− 8λ

γ

π

∞∑
k=0

(
1

k + 1

) (Hk+1

[√
4λ
γ

])2
2(k+1)(k + 1)!

= −C1 (3.58)

where the constant C1 is defined in Refs. [1, 74].

3.5.3.2 Expression for z

Before evaluating the constant z, we present two integrals involving Hermite polynomials

that will be useful. The first integral I(n)1 (α) is

I
(n)
1 (α) =

∫ ∞
0

dDHn[
√
α(D − 1)]e−α(D−1)

2

=
e−α√
α
(−1)n−1Hn−1

[√
α
]
, (3.59)
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which has been calculated in similarly as m using the formula in Eq. (3.56) and the Hermite

symmetry relation Hn [−y] = (−1)nHn[y]. The next integral I(n)2 (α) is given as

I
(n)
2 (α) =

∫ ∞
0

dDHn[
√
α(D − 1)]e−α(D+1)2 (3.60)

Now using the Hermite expansion formula [93]

Hn[x+ y] =
n∑
k=0

(
n

k

)
Hk[x](2y)

n−k;

(
n

k

)
=

n!

k!(n− k)!
, (3.61)

we can show:

I
(n)
2 (α) = (−4

√
α)n

∫ ∞
0

dDe−α(D+1)2 +
n∑
k=1

(
n

k

)
(−4

√
α)n−k

∫ ∞
0

dDHk[
√
α(D−1)]e−α(D+1)2 .

(3.62)

Now using the definition of η from Eq. (3.28), we get

I
(n)
2 (α) = (−4

√
α)n
√
π

α
η +

n∑
k=1

(
n

k

)
(−4

√
α)n−k

∫ ∞
0

dDHk[
√
α(D + 1)]e−α(D+1)2 (3.63)

Using Eq. (3.56), and the Hermite symmetry relation Hn [−y] = (−1)nHn[y] leads to

I
(n)
2 (α) =

∫ ∞
0

dDHn[
√
α(D − 1)]e−α(D+1)2

= (−4
√
α)n
√
π

α
η +

e−α√
α

n∑
k=1

(
n

k

)
(−4

√
α)n−kHk−1

[√
α
] (3.64)
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Now we evaluate z using the integral formula with Drazin inverse presented in Eq. (3.52) as

z = −
∞∑
n=1

(
1

n

)
1

2nn!

(α
π

)
I
(n)
1 (α)I

(n)
2 (α) (3.65)

Substituting the integrals I(n)1 (α) and I(n)2 (α) from Eq. (3.59) and Eq. (3.64) and simplifying we

get

z = ηC0 − C2, (3.66)

where

C0 = 2e−
4λ
γ

√
4λ

γπ

∞∑
n=0

(
2
√

4λ
γ

)n
(n+ 1)!(n+ 1)

Hn

[√
4λ

γ

]
, (3.67)

C2 = e−2α
∞∑
n=0

n∑
k=0

(−1)k
(
2
√

4λ
γ

)n−k
2k+1(n+ 1)!(k + 1)π

(
n

k

)
Hn

[√
4λ

γ

]
Hk

[√
4λ

γ

]
(3.68)

This expression for C0 and C2 match with the ones obtained using the full counting statistics

(FCS) based calculation presented in [1, 74].

3.5.3.3 Expression for k

Using Eq. (3.34) we write,

k = Γ

∫ ∞
−∞

dDθ(D) ˆ̃F+
11Π00(D) (3.69)

using Eq. (3.52) we get

k = −
∞∑
n=1

1

n

[∫ ∞
−∞

dDθ(D)ϕ(1)
n (D)

] [∫ ∞
−∞

dD′ϕ̃(1)
n (D′)Π00(D

′)

]
(3.70)

86



which using Eq. (3.59), can be written as

k = −
∞∑
n=1

1

n

[√
α

π

1

2nn!
I
(n)
1 (α)

] [∫ ∞
−∞

dD′Hn

[√
α(D′ − 1)

]
Π00(D

′)

]
(3.71)

using the expansion formula in Eq. (3.61), we can write

k = −
∞∑
n=1

1

n

[√
α

π

1

2nn!
I
(n)
1 (α)

][ n∑
k=0

(
n

k

)
(−4α)n−k

∫ ∞
−∞

dD′ϕ̃
(0)
k (D′)Π00(D

′)

]
(3.72)

From the bi-orthonromality property of the eigenfunctions of ˆ̃F00, we have ⟨λ(0)k |λ(0)0 ⟩ = δk0.

This gives us

k = −
∞∑
n=1

1

n

[√
α

π

1

2nn!
I
(n)
1 (α)

][ n∑
k=0

(
n

k

)
(−4

√
α)n−kδk0

]

= −
∞∑
n=1

1

n

[√
α

π

1

2nn!
I
(n)
1 (α)

] (
−4

√
α
)n (3.73)

Finallyy, substituting the expression of I(n)1 (α) from Eq. (3.59) we get

k = 2e−α
√
α

π

∞∑
n=1

(2
√
α)n−1

n!n
Hn−1

[√
α
]
≡ C0 (3.74)

where α = (4λ/γ) and this matches with the expression of C0 in Eq. (3.67).

3.5.4 Limiting value of k for accurate measurements

We introduce a Gaussian distribution function of D centered at y as

Π(D; y) =

√
4λ

γπ
e−[−

4λ
γ
(D−y)2]. (3.75)
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If the propagator es
ˆ̃F11 is applied to a Gaussian initial state, the evolved state also remains a

Gaussian with the mean and standard deviation decaying towards their equilibrium values. Thus

we can write

es
ˆ̃F11Π00(D) = Π(D; 1− 2e−s), (3.76)

es
ˆ̃F00Π11(D) = Π(D; 2e−s − 1) (3.77)

Now we evaluate the integral k from Eq. (3.34):

k =

∫ ∞
−∞

dDθ(D) ˆ̃F+
11Π00(D)

= −
∫ ∞
0

dD

∫ ∞
0

ds es
ˆ̃F11(1̂− P̂ ˆ̃F11

)Π00(D)

= −
∫ ∞
0

ds

∫ ∞
0

dD
[
Π(D; 1− 2e−s)− Π11(D)

]
≈ −

∫ ln 2

0

ds(−1) = ln 2,

(3.78)

where in the last line we have made the approximation that the integrand is non-zero only when

the center of the Gaussian Π(D; 1− 2e−s) is in the left of D = 0, i.e. from s = 0 to s = ln 2.
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Chapter 4: Feedback controlled Maxwell’s demon in a double quantum dot

(DQD) - quantum trajectory analysis

This chapter is based on the work done in collaboration with Björn Annby-Andersson,

Pharnam Bakhshinezhad, Daniel Holst, Guilherme De Sousa, Christopher Jarzynski, Peter Samuels-

son and Patrick P. Potts. A preprint related to this work has been posted as “Maxwell’s demon

across the quantum-to-classical transition” [3]. I worked on the implementation and execution

of the quantum jump trajectory simulations of the DQD Maxwell’s demon of Ref. [3] with help

from Björn Annby-Andersson. In this chapter we present the quantum trajectory simulation based

analysis of the DQD Maxwell’s demon model following Ref. [3] using the same datasets. Pa-

rameters for different characteristic behavior of the simulation were calculated theoretically and

provided to me by Björn Annby-Andersson. For master equation based approach to the model

and further details on energetics, see Ref. [75, 76].

4.1 Chapter overview

In this chapter we investigate the qualitative behavior of a double quantum dot (DQD)

Maxwell’s demon, by simulating quantum trajectories. This model of Maxwell’s demon is based

on a protocol originally introduced by Averin et. al. [94] and later used for DQD system [66,

95, 96] by Annby-Andersson et. al. [4]. The classical version of this Annby-Andersson model
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(AA model) has been analyzed in the Ref. [4] which considers both the ideal and non-ideal

feedback control. In this chapter we focus on the case of this model when quantum effects

are present and the measurement-feedback is imperfect. The model is investigated using the

continuous weak measurement and feedback formalism for non-autonomous (quantum) systems

discussed in Chapter. 2. However, instead of using the master equation approach of Chapter 3,

we use an alternate simulation-based approach to investigate the model. This chapter serves as an

investigation of the non-autonomous Maxwell’s demon starting from the microscopic quantum

description. We will revisit this model in Chapter 5 to discuss the connection between non-

autonomous and autonomous Maxwell’s demon.

Sec. 4.2 of this chapter discusses the physical setup of the model and presents the details

of modelling. Sec. 4.2.1 discusses a brief overview of AA model [4], which is relevant for both

this and the next chapter in this thesis. The description of the AA model [4] in Sec. 4.2.1 has

been adapted from Ref. [2]. In Sec. 4.2.2 we present the open quantum systems approach based

modelling of the DQD Maxwell’s demon following Ref. [3]. Sec. 4.3 discusses the equations of

motion of the joint dynamics of the the DQD and the control parameter. Sec. 4.4 discusses results

from the trajectory simulations to show some of the key features of the model that arise due to

the interplay of coherence generation, weak measurements and feedback delay. In this section we

also present a qualitative discussion on how the classical jump picture emerges from the quantum

coherent transport in this model.

Lastly, we point out that in this chapter we only investigate the trajectory simulations of the

model and its qualitative features. The analytical approach to this model has not been presented

in this thesis. For the master equation based analysis of the microscopic quantum model and dis-

cussion on the emergence of the classical description (AA model, [4]) from the quantum model,
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RL

Figure 4.1: A schematic diagram for the double quantum dot Maxwell’s demon (Annby-
Andersson model [4]). The two quantum dots are separated by a tunneling barrier. The agent
(demon) is making measurement into the DQD system and providing feedback accordingly. The
DQD is coupled to two electron reservoirs L and R with chemical potentials µL and µR re-
spectively. The agent transports the electron from lower to higher chemical potential through
measurement and feedback.

we refer the reader to Refs. [3, 75].

4.2 Physical Setup and modelling

4.2.1 Idealized classical protocol

Here we consider a model of Maxwell’s demon (information engine) in a system of two

quantum dots coupled in a series (see Fig. 4.1). A quantum dot (QD) is an artificial nano-scale

structure that can confine an electron and act as ‘artificial atom’ with tunable energy levels

[95, 96, 97]. The charge state of a quantum dot can be labeled as either empty or occupied

based on the absence or presence of an confined electron. The physical system in this model

consists of two coupled QDs in series with a tunneling barrier, and each of the QD is connected
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to an electron reservoir maintained at a fixed chemical potential (µL/R) and temperature T ; see

Refs. [4, 94]. We consider a situation where an external agent (demon) controls the energy levels

of each dot, and switches the energy level configuration of the double quantum dot (DQD) among

three possible configurations: ϵl, ϵ0, and ϵu with, ϵl < ϵ0 < ϵu. Due to Coulomb blockade only a

single electron can reside in the DQD system. Hence the possible occupation states of the DQD

are: (i) |L⟩ : the left dot contains the excess electron, (ii) |R⟩: the right dot contains the excess

electron, (iii) |0⟩: both dots are unoccupied. The agent is continuously monitors the DQD system

and applies the feedback protocol accordingly. The electron reservoirs coupled to the left and

right dots are maintained at chemical potentials µL and µR. If µR > µL, transferring an electron

from the left to the right reservoir requires electrical work of (µR − µL) to be performed against

a voltage bias. Thus, if by the feedback protocol, the agent transfers one electron from the left to

the right reservoir, it is equivalent to charging up an battery with the energy of (µR − µL).

In the ideal (classical) mode of operation the DQD starts in the empty state, with the energy

level of the left dot at ϵ0 and that of the right dot at ϵu, where (ϵu − µL/R) ≫ kBT and kB is

Boltzmann’s constant. The steps of the protocol are shown in the Fig. 4.2. When (a) an electron

enters the left dot from the left reservoir, (b) the agent instantaneously applies feedback to change

the energy levels of both the left and right dots to ϵl, where (µL/R − ϵl) ≫ kBT . During this

first feedback step, the external agent extracts (ϵ0 − ϵl) work. Next, the system is monitored until

(c) the electron tunnels from the left to the right dot, at which point (d) feedback is applied to

change the energy level of the left dot to ϵu and the right dot to ϵ0. The external agent performs

(ϵ0 − ϵl) work during this second feedback step, cancelling the work extraction of the previous

step. Finally, (e) when the electron jumps from the right dot to the right reservoir, (f) feedback

is applied again to switch the energy levels of the DQD back to their initial values. No work is
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(a)

(b)

(c)

(d)

(e)

(f)

(a) Protocol steps

A

B C

(0,1)

(-1,-1) (1, -1)

(b) Feedback scheme

Figure 4.2: Schematics of the idealized classical protocol for the DQD Maxwell’s demon (AA
model) and the encoding of the protocol in feedback variables (D1, D2). The figure in the left
shows the steps of the ideal feedback protocol of the AA model. The figure on the right shows
the encoding of the protocol in the feedback variables (D1, D2). The red dots represent the
eigenvalues of Â1 and Â2 as (ξ(1), ξ(2)) corresponding to state of the DQD that feedback regions
represent and the arrows show the desired direction of cycle of the control parameters.

performed during this step, as the DQD is empty. This cyclic protocol transfers an electron from

the left to the right reservoir. Since no net work is performed by the external agent, the energy for

this transfer must come from the thermal reservoirs. Thus the feedback-driven cycle ultimately

converts heat into chemical work, of the amount Wext = (µR−µL); see Ref. [4] for more details.

4.2.2 The feedback-resolved model: quantum model with weak measurement

and finite-bandwidth feedback

Now we present a quantum description of the DQD system and also consider a situation

where the feedback by the agent (demon) can be imperfect, where the measurement by the agent

affects the quantum state of the system (back action). We consider the situation when the demon
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is monitoring the system in a way that can be modelled by weak continuous quantum measure-

ments [63, 78] and the feedback of the demon is also not instantaneous and can have response

delay due to the finite bandwidth detector [61]. We model this system under the formalism dis-

cussed in Chapter 2 following Ref. [1].

The Hamiltonian for the DQD system is,

Ĥ(ϵL, ϵR) = ϵL|L⟩⟨L|+ ϵR|R⟩⟨R|+ g(|L⟩⟨R|+ |R⟩⟨L|), (4.1)

where ϵL(ϵR) stands for energy of the left (right) quantum dot and g is the inter-dot coupling. The

quantum dot is also weakly coupled with two electron reservoirs with the coupling constant Γ,

with the left (right) dot being coupled to the left (right) electron reservoir. Note that this Hamilto-

nian generates coherence between |L⟩ and |R⟩ but does not generate any coherence between |0⟩

and |L⟩(|R⟩). We label the electron reservoirs by α ∈ L,R for left (L) and right (R) reservoirs.

The transition rate for an electron from (to) the reservoir α to (from) the quantum dot α at energy

level ϵ is given as γα(ϵ)(κα(ϵ)) and these transition rates can be expressed as

γα(ϵ) = ΓfFD
α (ϵ) (4.2)

κα(ϵ) = Γ(1− fFD
α (ϵ)), (4.3)

where fFD
α (ϵ) is the Fermi-Dirac distribution:

fFD
α (ϵ) =

1

eβ(ϵ−µα) + 1
. (4.4)
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Here β = 1/kBT is the inverse temperature and µα is the chemical potential of the electron

reservoir. Note that the ratio of the transition rates satisfy the generalized local detailed balance

relation:

γα(ϵ)

κα(ϵ)
= e−β(ϵ−µα). (4.5)

We model the dynamics of the state of the DQD system, ρ̂t, by the Lindblad master equation [64]

∂tρ̂t = L(ϵL, ϵR)ρ̂t, where the Lindbladian superoperator L(ϵL, ϵR) is defined as

L(ϵL, ϵR)ρ̂ = −i
[
Ĥ(ϵL, ϵR), ρ

]
+
∑
α=L,R

(γα(ϵα)D [|α⟩⟨0|] + κα(ϵα)D [|0⟩⟨α|]) , (4.6)

where D[σ̂]ρ̂ = σ̂ρ̂σ̂† − (1/2)(σ̂†σ̂ρ̂ + ρ̂σ̂†σ̂). The first term on the r.h.s. of Eq. (4.6) is the von-

Neumann term (with ℏ = 1) that generates unitary evolution and the terms under the summation

are dissipators corresponding to coupling with the electron reservoir that generates transitions of

electron between the reservoir and quantum dots.

Here we consider a situation where the agent is making measurement of two observable:

Â1 = −|L⟩⟨L| + |R⟩⟨R| and Â2 = |0⟩⟨0| − (|L⟩⟨L| + |R⟩⟨R|). The use of two observables is

required to avoid incorrect interpretation of the state of the system [3, 4, 76]. Here, Â1 measures

which of the QD the electron is located it; and the corresponding outcomes ξ(1)L = −1 (ξ
(1)
R = +1)

corresponds to the electron being in the left (right) dot. The observable Â2 measures the overall

charge state of the DQD, and the corresponding outcome ξ(2)0 = +1 implies the DQD is empty,

and the outcome ξ(2)L,R = −1 implies the DQD is occupied. Note that the measurement of Â2

does not give any information about which of the dot in DQD the electron is in. The measure-

ment of Â1 causes decoherence in the |L⟩, |R⟩ basis but the measurement of Â2 does not. The
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Hamiltonian in Eq. (4.1) does not create any coherence between |0⟩ and |L⟩ (|R⟩) and we have[
Ĥ(D), Â2

]
= 0. Thus, the measurement of Â2 act as a completely classical measurement.

Note that since the observable Â1 and Â2 commute with each-other, [Â1, Â2] = 0, we can simul-

taneously measure both the observable and also reduce their uncertainties independently. The

observables Â1 and Â2 are continuously monitored by the agent, and we model these measure-

ments using the Gaussian POVM for weak measurements, (discussed previously in Chapter 2,

see also Eq. (4.10) in Sec. 4.3.1 of this chapter for additional details) with measurement strength

λ1 and λ2 respectively. The measurement signals from these observable are then filtered with

exponential smoothing with bandwidth γ1 and γ2 respectively to obtained filtered measurement

signals D1(t) and D2(t). These filtered signals D(t) = (D1(t), D2(t)) are used by the agent

to estimate the state of the system and to provide feedback accordingly (discussed previously in

Chapter 2, see also Eq. (4.11) in Sec. 4.3.1 of this chapter for additional details).

The agent provides feedback by changing the energy levels of the DQD. We describe the

feedback protocol by making the energy levels (ϵα) dependent on the filtered measurement out-

come (D) which now acts as the control parameter, i.e., ϵα → ϵα(D). Thus, we replace the

Hamiltonian in Eq.(4.1) and the Lindbladian in Eq. (4.6) with their feedback-controlled ana-

logues: Ĥ(ϵL, ϵR) → Ĥ(D) ≡ Ĥ(ϵL(D), ϵR(D)) and L(ϵL, ϵR) → L(D) ≡ L(ϵL(D), ϵR(D)).

Now in the feedback protocol discussed Sec. 4.2, the energy level configuration (ϵL(D), ϵR(D))

of the DQD cycles through three energy landscapes A : (ϵ0, ϵu), B : (ϵl, ϵl) and C : (ϵu, ϵ0)

and we label the corresponding Hamiltonian and Lindbladians as Ĥj and Lj respectively, where

j ∈ A,B,C. We now encode the feedback protocol in the feedback Hamiltonian as:

Ĥ(D) = θ(D2)ĤA + [1− θ(D1)][1− θ(D)2]ĤB + θ(D1)[1− θ(D2)]ĤC (4.7)
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and correspondingly for the feedback Lindbladian as:

L(D) = θ(D2)LA + [1− θ(D1)][1− θ(D)2]LB + θ(D1)[1− θ(D2)]LC , (4.8)

where θ(D) is Heaviside step function. The encoding of the feedback protocol can be understood

as follows (see Fig. 4.2). The control parameter D is the filtered version of the measurement

outcomes. For D2 > 0 we interpret that the measurement of the observable Â2 as 1, which

implies that the DQD is unoccupied, for this situation we set the energy level configuration of the

DQD to A. For D2 < 0, we interpret that the DQD is occupied by the electron and based on the

measurement of the observable Â1 we try to determine whether the electron is in the left or right

dot and apply the feedback protocol accordingly. Given D2 < 0, for D1 < 0 we interpret the

outcome of the observable Â1 is ξ(1)L = −1 and the electron is in the left dot and set the energy

level configuration of the DQD to B. Similarly, for D2 < 0 and D1 > 0 we interpret the location

of the electron to be in the right dot and set the energy level configuration of the DQD to C.

4.3 Theory and methods

4.3.1 Evolution map of the quantum state

Here we discuss the evolution of the quantum state of the DQD for a single run of the ex-

periment. We model the stochastic evolution of the quantum state of the DQD by the conditional

density matrix ρ̂c(t), which describe the state of the DQD system at anytime, conditioned on the

entire past measurement record of the observable Â1 and Â2 and the entire record of exchange

of the electron between DQD and the electron reservoirs. Under the measurement and feedback
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scheme discussed previously in Sec. 4.2, the time evolution of ρ̂c from any time t to t + dt is

described by the evolution map

ρ̂c(t+ dt) =

(
4∑
j=1

dNj(t)E (j)
J (D) + dN0(t)ENJ(D)

)
M2(z2)M1(z1)ρ̂c(t). (4.9)

The Eq. (4.9) represents a stochastic quantum map, and details of the each of the operations in

this map are described below. Here , M1(z1) and M2(z2) represent measurement operations

corresponding to detector 1 and detector 2, respectively:

Ml(z)ρ̂ =
K̂l(z)ρ̂K̂

†
l (z)

tr{K̂†l (z)K̂l(z)ρ̂}
, K̂l(z) =

(
2λldt

π

)1/4

e−λldt(z−Âl)
2

, l = 1, 2. (4.10)

The distribution of the measurement outcomes zl(t) is given by P (t)
l (z) = tr{K̂†l (z)K̂l(z)ρ̂c(t)}.

E (j)
J (D) and ENJ(D) correspond to ‘Jump’ and ‘No Jump’ evolution of the quantum-jump un-

ravelling of the Lindbladian given in Eq. (4.6). In the evolution map given in Eq. (4.9), the

random variables {zl} capture the stochasticity due to the measurement process and the random

variables {dNj} capture the stochasticity due to the interaction with the electron reservoirs. At

any instant, the value of the control parameter D(t) = (D1(t), D2(t)) is calculated from the past

measurement outcomes (z1(t), z2(t)) through the filtering relation [1, 61]

Dj(t) =

∫ t

−∞
dsγje

−γj(t−s)zj(s), j = 1, 2. (4.11)

The unravelling of the Lindbladian term in Eq. (4.6) leads to four possible quantum jumps which

we describe by the jump operators: ĉ1(D) =
√
γL(ϵL(D))|L⟩⟨0|, ĉ2(D) =

√
κL(ϵL(D))|0⟩⟨L|,

ĉ3(D) =
√
γR(ϵR(D))|R⟩⟨0| and ĉ4(D) =

√
κR(ϵR(D))|0⟩⟨R|. The corresponding evolution
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of the quantum state is given by

E (j)
J (D)ˆ̃ρc =

ĉj(D)ˆ̃ρcĉ
†
j(D)

tr{ĉ†j(D)ĉj(D)ˆ̃ρc}
, j = 1, .., 4, (4.12)

where the state of the DQD is ˆ̃ρc(t) at time instant t. Here we use ˆ̃ρc(t) instead of ρ̂c to imply

that the evolution operation are being applied on the conditional density matrix ˆ̃ρc(t) which is

obtained from ρ̂c by applying the measurement operation. The probability of a particular jump j

happening during the time interval t to t + dt is given by pj(t) = dt tr{ĉ†j(D)ĉj(D)ˆ̃ρc}, and the

stochastic jump random variables {dNj(t), j = 1, .., 4} are distributed as

dNj(t) =


1, Pr[1] = pj(t),

0, Pr[0] = 1− pj(t),

(4.13)

where Pr[0(1)] denotes the probability of observing dNj(t) = 0(1). The stochastic jump variables

satisfy E[dNj(t)] = pj(t), and dNi(t)dNj(t) = δijdNj(t), with E[·] being the ensemble average

over all possible trajectories of jumps. We also define a similar stochastic variable

dN0(t) = 1−
4∑
j=1

dNj(t) (4.14)

for the ‘No Jump’ evolution during the interval [t, t + dt]. For dN0(t), we have the expectation

value E[dN0(t)] = p0(t) = 1 −
∑

j pj(t). For the ‘No Jump’ case, the quantum state evolves
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under the effective non-unitary Hamiltonian,

Ĥeff(D) = Ĥ(ϵL(D), ϵR(D))− i

2

4∑
j=1

ĉ†j(D)ĉj(D), (4.15)

where, Ĥ(ϵL(D), ϵR(D)) is the feedback Hamiltonian as defined in the Eq. (4.1). The No-Jump

(NJ) evolution is given by,

ENJ(D)ˆ̃ρc =
e−iĤeff(D)dt ˆ̃ρce

iĤ†
eff(D)dt

tr{e−iĤeff(D)dt ˆ̃ρceiĤ
†
eff(D)dt}

. (4.16)

4.3.2 Trajectory and ensemble level equations of motion

It can be shown (see Appendix 4.5) that under the continuous weak measurement frame-

work joint dynamics of the quantum state ρ̂c from the map Eq. (4.9) can be written as

dρ̂c = −idt[Ĥ(D), ρ̂c]

+
4∑
j=1

(
−dt

2
{ĉ†j(D)ĉj(D), ρ̂c}+ dt tr{ĉ†j(D)ĉj(D)ρ̂c}ρ̂c + dNj(t)

ĉj(D)ρ̂cĉ
†
j(D)

tr{ĉ†j(D)ĉj(D)ρ̂c}
− dNj(t)ρ̂c

)

+ dtλ1D[Â1]ρ̂c + dW1

√
λ1{Â1 − ⟨Â1⟩c, ρ̂c}+ dW2

√
λ2{Â2 − ⟨Â2⟩c, ρ̂c},

(4.17)

where {dNj} are Poisson jump variables for quantum jumps. For detector variable D = (D1, D2)

the dynamics be written as

dDj = dtγj(⟨Âj⟩c −Dj) + dWj
γj

2
√
λj
, j = 1, 2 (4.18)
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where, dW1 and dW2 are Wiener increments that captures the effect of the measurement of the

observables Â1 and Â2 respectively (see Chapter 2). Eq. (4.17) and Eq. (4.18) together form a

set of coupled stochastic differential equations that describe the joint dynamics of the quantum

state of the DQD and the feedback control parameter. Here the first term in Eq. (4.17) represents

unitary evolution due to the feedback Hamiltonian. The term under the summation arises from

the quantum jump unravelling [63, 78] of the Lindbladian Eq. (4.6), and represents the effect of

coupling with the electron reservoirs. The first terms in the third line captures the backaction due

to the measurement of the observable Â1. The last two terms of the equations, containing Wiener

increments, capture the effect of the stochastic kicks in the quantum state due to the measurement

processes.

Equations (4.17) and (4.18) together describe the equations of motion for the model. We

generate the trajectories of the state of our model by using a modification of the Monte Carlo

wave function (MCWF) algorithm [68, 98] to incorporate the feedback. For our simulations we

directly use the evolution map in the Eq. (4.9) with an assumption that the charge detection by the

detector-2 is accurate. See Appendix. 4.6 for the details of ideal-charge detection approximation

and Appendix. 4.7 for the details of simulation scheme. In the next section we present the results

of the simulation studies.

Alternatively, one can investigate the model in an equivalent ensemble picture using the

QFPME [1] with the feedback Lindbladian L(D) from Eq. (4.6):

∂tρ̂t(D) = L(D)ρ̂t +
∑
j=1,2

[
γj∂Dj

Aj(Dj)ρ̂t(D) +
γ2j
8λj

∂2Dj
ρ̂t(D)

]
, (4.19)

where Aj(Dj)ρ̂ = (1/2){Âj − Dj, ρ̂}. In this chapter we are keeping our discussion limited
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to the study of the qualitative behavior of the model using the trajectory approach only, for the

discussion on the master equation approach and further discussion on the quantitative energetics

of the demon, see Refs. [3, 75].

4.4 Qualitative features from trajectory simulations

By simulating the quantum trajectories of the DQD system we see different interesting

behaviors emerge for different parameter regimes. We set the model in the ideal charge detector

regime thus the detector-2 is accurate, fast and does not cause any decoherence as discussed in

the Appendix 4.6. For our simulations we have taken the parameters: the inverse temperature

β = 1.0, the coupling constant with the electron reservoirs Γ = 0.1, the chemical potential for

the electron reservoirs as µR = 1.5, µL = −1.5, and the energy level configurations of the dots

ϵ0 = 0.0, ϵu = 5.0, ϵl = −5.0. We illustrate the interplay between the interdot-coupling constant

g, measurement strength λ1 of the detector-1 and the bandwidth γ1 of detector-1 by showing

three different configurations of these parameters showing three different qualitative features in

the model. Figures 4.3, 4.4 and 4.5 shows the evolution of D1, ⟨Â1⟩c = Tr
{
ρ̂cÂ1

}
and Ĥ(D)

obtained from trajectory simulations.

4.4.1 Delayed feedback effect

For Fig. 4.3 we have g = 25, γ1 = 10, λ1 = 1, and in this setup we see that the measure-

ment strength is very weak (λ1/g = 0.04, λ1/γ1 = 0.1). Thus the evolution of instantaneous

expectation value of the detector 1 observable⟨Â1⟩c preserves the quantum Rabi oscillation like

behavior with some stochasticity from weak measurements. We also see that thedetector vari-
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Figure 4.3: Detector is lagging behind the quantum state. The figure above shows the evolution
of the feedback variable and instantaneous expectation value of the observable Â1. The figure
below plots the evolution of the feedback Hamiltonian. Parameters: β = 1.0,Γ = 0.1, µR =
1.5, µL = −1.5, ϵ0 = 0.0, ϵu = 5.0, ϵl = −5.0, g = 25, γ1 = 10.0, λ1 = 1.0 and simulation time
step δt = 10−4
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Figure 4.4: Suppression of interdot tunneling due to quantum Zeno effect. Parameters: β =
1.0,Γ = 0.1, µR = 1.5, µL = −1.5, ϵ0 = 0.0, ϵu = 5.0, ϵl = −5.0, g = 0.1, γ1 = 10.0, λ1 = 80.0
and simulation time step δt = 10−4

able D1 and correspondingly the feedback Hamiltonian Ĥ(D) are lag behind the evolution of

the quantum state (g/γ1 = 2.5). This can be particularly seen around Γt ≈ 26.42 in Fig. 4.3,

where we see that ⟨Â1⟩c has switched to positive value but the feedback variable D1 is still fluc-

tuating around −1 and the the feedback Hamiltonian is set to ĤB instead of the ideal feedback

configuration ĤC .

4.4.2 Quantum Zeno effect

For Fig. 4.4 we have g = 0.1, γ1 = 10.0, λ1 = 80.0, and we observe the quantum Zeno

effect [99] on the trajectory level. For this setup we see that the measurement is strong (λ1/γ1 =

8, λ1/g = 800). The feedback is fast compared to the coherence generation (γ1/g = 100).

Whenever coherence between the the state |L⟩ and |R⟩ is generated, it is destroyed quickly by
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Figure 4.5: Suppression of the interdot tunneling due to random shuffling of the feedback Hamil-
tonain, Parameters: β = 1.0,Γ = 0.1, µR = 1.5, µL = −1.5, ϵ0 = 0.0, ϵu = 5.0, ϵl = −5.0, g =
0.1, γ1 = 10.0, λ1 = 1.0, and simulation time step δt = 10−4

the continuous measurement, and thus the coherent transport of the electron between left and

right quantum dot is suppressed. This can be seen in the Fig. 4.4 by observing that ⟨Â⟩c ≈ −1

as long as the electron is inside the DQD, thus the electron fails to tunnel to the right dot from

the left dot in ĤB configuration due to strong continuous measurement and eventually jumps

back to the left electron reservoir directly from the energy level ϵl and the feedback then instantly

switches ĤB → ĤA due to fast feedback.

4.4.3 Phase damping effect due to random feedback

For Fig. 4.5, we have g = 0.1, γ1 = 10.0, λ1 = 1.0 we see a Zeno-like phase damping

effect due to random shuffling the feedback Hamiltonian Ĥ(D) due to a noisy feedback (λ1/γ1 =

0.1, g/γ1 = 0.01). The ratio of measurement strength and interdot coupling is λ1/g = 10, which
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is higher than the very weak measurement scenario of Fig. 4.3 but lower than the case of the

strong-measurement Zeno-effect scenario of Fig. 4.4. The ratio of the measurement strength and

feedback bandwidth (λ1/γ1 = 0.1) here is kept the same as in the case of Fig. 4.3. However, in

this situation (Fig. 4.5) we also get a Zeno-like suppression of quantum tunneling between the

dots due to fast switching of the feedback Hamiltonian compared to generation of the coherence

(Note, that for Fig. 4.3 we had g/γ1 = 2.5, wheras here in Fig. 4.5 we have g/γ1 = 0.01). Due

this fast nature of feedback we get a random change in the detuning (|ϵL−ϵR|) of the Hamiltonian

Ĥ(D) = ĤB ↔ ĤC , which leads to a decay in the coherence of the the quantum state ρc without

affecting the population, eventually leading to a phase-damping effect [88]. Due to this phase-

damping, the electron the coherent transport of the electron is suppressed similar to the case of

the quantum Zeno effect. Note that here (Fig. 4.5) this suppression of coherent quantum transport

happens due to quick random shuffling of the feedback Hamiltonian in contrast to the suppression

of quantum transport in Fig. 4.4, which was primarily due to strong measurement.

4.4.4 Quantum to classical transition

Figures 4.6 and 4.7 show the evolution of the quantum state ρ̂c by plotting the population

and coherence parts of the density matrices during and interdot tunneling. For both figures we

have g = 0.1, γ1 = 1.0 but for the quantum case (Fig. 4.6) we have taken λ1 = 0.6 and for

the classical case (Fig. 4.7) we have, λ1 = 6.0. For both plots we see that the population is

transferred from the state |L⟩ to |R⟩. However, for the quantum case this interdot transition

is relatively slow and associated with an oscillation in the coherence (Fig. 4.6). Whereas for

the classical case, we see the change is population is relatively sharp and the interdot transition
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Figure 4.6: Evolution of population (above) and the coherence (below) during interdot electron
transfer. This figure illustrates the quantum nature of the interdot transport of the electron. Pa-
rameters: β = 1.0,Γ = 0.1, µR = 1.5, µL = −1.5, ϵ0 = 0.0, ϵu = 5.0, ϵl = −5.0, g = 0.1, γ1 =
1.0λ1 = 0.6 and simulation time step δt = 10−4

happens with a short spike in the coherence (Fig. 4.7). Thus we see that for stronger measurement

(λ1/γ1 = 6, λ1/g = 60) here, the transport of electron from left to the right dot behaves like a

discrete stochastic jump event even though the microscopically the transport is coherent in nature.

It is possible to assign an effective classical jump rate to this transition using the master equation

approach [3, 75] and obtain a classical discrete state model for the DQD demon described in [4]

from this underlying microscopic picture.

4.5 Appendix: Quantum evolution map to the stochastic master equation

Under the weak measurement scheme [78], we model the measurement process by gener-

ating a Gaussian white noise around the instantaneous conditional expectation value (⟨Aj⟩c =
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Figure 4.7: Evolution of population (above) and the coherence (below) during interdot electron
transfer. This figure illustrates the classical jump like behavior of the interdot transport of the
electron. Parameters: β = 1.0,Γ = 0.1, µR = 1.5, µL = −1.5, ϵ0 = 0.0, ϵu = 5.0, ϵl =
−5.0, g = 0.1, γ1 = 1.0λ1 = 6.0 and simulation time step δt = 10−4
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tr{Âj ρ̂c(t)}) of the observable as,

zj(t) = ⟨Âj⟩c +
1

2
√
λjdt

dWj, j = 1, 2 (4.20)

where dW1 and dW2 are Wiener increments with the properties: E[dW1,2] = 0 and in dWidWj =

δijdt, under Ito calculus. After the measurement operations the quantum state ρ̂c(t) evolves to

ρ̂∗c(t) = ρ̂c(t) + dtλ1D[Â1]ρ̂c(t) + dtλ2D[Â2]ρ̂c(t)

+
√
λ1dW1{Â1 − ⟨Â1⟩c, ρ̂c}+

√
λ2dW2{Â2 − ⟨Â2⟩c, ρ̂c}

(4.21)

where, ρ̂∗c(t) = M1(z1(t))M2(z2(t))ρ̂c(t). The measurement operator Â2 = |0⟩⟨0| − (|L⟩⟨L|+

|R⟩⟨R|) does not cause any decoherence in the |L⟩⟨L| ⊕ |R⟩⟨R| subspace. Thus we can drop the

back-action term containing D[Â2] from our consideration; and thus we get,

ρ̂∗c(t) = ρ̂c(t)+dtλ1D[Â1]ρ̂c(t)+
√
λ1dW1{Â1−⟨Â1⟩c, ρ̂c}+

√
λ2dW2{Â2−⟨Â2⟩c, ρ̂c} (4.22)

After the measurement, we apply the evolution of the DQD under the effect of the electron to

obtain the final time evolved state ρ̂c(t+ dt) as

ρ̂c(t+ dt) =
4∑
j=1

dNj(t)E (j)
J (D(t))ρ̂∗c(t) +

(
1−

4∑
j=1

dNj(t)

)
ENJ(D(t))ρ̂∗c(t) (4.23)

We expand the exponential in the the no-jump evolution up to O(dt) and get the following

expression,

ENJ(D)ρ̂∗c(t) =
ρ̂∗c(t) + dt(−iĤeff(D)ρ̂∗c(t) + iρ̂∗c(t)Ĥ

†
eff(D))

1 + dt tr{−iĤeff(D)ρ̂∗c(t) + iρ̂∗c(t)Ĥ
†
eff(D)}

(4.24)
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Now using the definition of Heff(D) from Eq. (4.15) in the expression above we get,

ENJ(D)ρ̂∗c(t) =

[
ρ̂∗c(t)− idt[Ĥ(D), ρ̂∗c(t)]− dt

2

∑4
j=1{ĉ

†
j(D)ĉj(D), ρ̂∗c(t)}

]
[
1− dt

∑4
j=1 tr{ĉ

†
j(D)ĉj(D)ρ̂∗c(t)}

] (4.25)

Expanding the denominator and keeping terms upto O(dt) we get,

ENJ(D)ρ̂∗c(t) = ρ̂∗c(t)−idt[Ĥ(D), ρ̂∗c(t)]−
dt

2

4∑
j=1

{ĉ†j(D)ĉj(D), ρ̂∗c(t)}+dt
4∑
j=1

tr{ĉ†j(D)ĉj(D)ρ̂∗c(t)}ρ̂∗c(t)

(4.26)

Note that dNkdWj , and dNkdt contribute to evolution terms that are of order (dt)
3
2 and

(dt)2. Since we are interested in the evolution equation up to O(dt), we use Eqs.(4.22) and

(4.26) in Eq. (4.23), and by dropping the terms with dNkdWj , dWjdt and dNkdt, we get

ρ̂c(t+ dt)− ρ̂c(t) = −idt[Ĥ(D), ρ̂(t)] + dtλ1D[Â1]ρ̂c(t)

− dt

2

4∑
j=1

{ĉ†j(D)ĉj(D), ρ̂(t)}+ dt
4∑
j=1

tr{ĉ†j(D)ĉj(D)ρ̂(t)}ρ̂(t)

+
4∑
j=1

dNj(t)(E (j)
J (D(t)− 1)ρ̂c(t)

+
√
λ1dW1{Â1 − ⟨Â1⟩c, ρ̂c(t)}+

√
λ2dW2{Â2 − ⟨Â2⟩c, ρ̂c(t)}

(4.27)

Finally by replacing dρ̂c = ρ̂c(t+ dt)− ρ̂c(t) in the equation above we get the stochastic master

equation shown in Eq. (4.17).

4.6 Appendix: Ideal charge detection assumption

Since the detector 2 performs classical back action-free measurement on the system, we

can consider the limit of accurate detector by taking λ2/γ2 → ∞ without affecting the sys-
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tem. We assume here that the feedback due to the detectror 2 is fast (responsive) enough in

comparison to the other timescales of the system and the bandwidth of the detector 2 satisfies

γ2 ≫ max{Γ, g, |ϵu/l − ϵ0|, γ1}. For the fast and accurate measurement of the detector-2 we

get an ideal-charge detection of the DQD. Thus, under these assumptions, whenever an electron

enters or leaves the DQD, the corresponding changes of the feedback Hamiltonian ĤA ↔ ĤB or

ĤA ↔ ĤC are instantaneous.

To implement this approximation, discretize the Eq. (4.11) in time as a deference equation:

Dj(kδt) = δtγjzj(kδt) + (1− δtγj)Dj((k − 1)δt), (4.28)

where δt is the time-step and t = kδt. Here (γjδt) is the smoothing factor of the filter and for

simulating quantum trajectories δt needs to be chosen such that we have 0 ≤ (γjδt) ≤ 1. To

achieve the fast limit of the detector we take the maximum possible value of γ2 in the simulation

by setting γ2δt = 1. Thus, for the fast detector 2 we have,

D2(kδt) = z2(kδt). (4.29)

This implies that the measurement signal z2(t) from the detector 2 is directly converted to feed-

back variable D2(t) without any filtering.

For detector 2, (observable: Â2 = +|0⟩⟨0|− (1̂−|0⟩⟨0|)) we have the POVM K̂2(z) in the

measurement basis as

K̂2(z2) =

(
2λ2δt

π

)1/4 [
e−λ2δt(z2−(+1))2 |0⟩⟨0|+ e−λ2δt(z2−(−1)))

2

(1̂− |0⟩⟨0|)
]
. (4.30)
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Next we want to increase the measurement strength of the detector 2 to the infinite limit (λ2 →

∞) while keeping δt fixed to achieve the strong measurement limit in the POVM K̂2(z2), which

we can approximate as projective measurement POVM:

K̂2(z2) =



|0⟩⟨0|, z2 = +1,

(1̂− |0⟩⟨0|), z2 = −1

0, otherwise

(4.31)

and for a quantum state ˆ̄ρc(t), the corresponding distribution of z2 is given as P (t)
2 (z2 = +1) =

tr{|0⟩⟨0| ˆ̄ρc(t)} and P (t)
2 (z2 = −1) = 1 − tr{|0⟩⟨0| ˆ̄ρc(t)}. For the implementation of the effect

of detector-2 measurements in the simulations, we use this ideal-charge detection approximation

(See Appendix. 4.7).

4.7 Appendix: Monte Carlo wave function simulation scheme with feedback

control

Here we implement the quantum jump trajectory [100, 101] simulation under feedback

control by modifying the standard Monte Carlo wave function (MCWF) [68, 98] algorithm to

incorporate measurement and feedback. To study the model under consideration, we implement

a simulation scheme that captures the dynamics of the detector and the quantum state together.

At any time instant t, we describe the quantum state of the DQD system by the wave function:

|ψ(t)⟩ = c0(t) |0⟩+ cL(t) |L⟩+ cR(t) |R⟩ (4.32)
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Here the coefficients {cj(t)}j=L,R,E depend on the complete history of the measurement out-

comes. The conditional density matrix corresponding to this quantum state is by ρ̂c(t) = |ψ(t)⟩ ⟨ψ(t)|.

We have either c0(t) = 1, cL(t) = cR(t) = 0 or, c0(t) = 0, |cL(t)|2 + |cR(t)|2 = 1. The quantum

state vector |ψ(t)⟩ is represented as a 3 × 1 normalized column vector. The control parameter

starts with unupdated state at D(t− δt) = (D1(t− δt), D2(t− δt)).

Detector 1 measurement: To simulate the effect of the measurement, first a random variable

ξ ∈ {−1, 0,+1} is sampled based on the distribution

Pr(ξ) =



|cL(t)|2, ξ = −1

|c0(t)|2, ξ = 0

|cR(t)|2, ξ = +1.

(4.33)

Then the measurement outcome is sampled from the normal distribution with ξ mean (µ) and

1/(2
√
λ1δt) standard deviation (σ):

z1(t) ∼ N
(
µ = ξ, σ2 =

1

4λ1δt

)
. (4.34)

Then using the sampled value of z1(t), the matrix representation of K̂1(z1(t)) is calculated. We

then modify the quantum state |ψ(t)⟩ to a intermediate new state as

∣∣∣ψ̃(t)〉 =
K̂1(z1(t)) |ψ(t)⟩∣∣∣K̂1(z1(t)) |ψ(t)⟩

∣∣∣ . (4.35)
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Next the updated control parameter D1(t) is calculated using the measurement outcome z1(t) as:

D1(t) = δtγ1z1(t) + (1− δtγ1)D1(t− δt). (4.36)

Detector 2 measurement: The second detector performs projective measurements in the system.

Thus, we have z2(t) ∈ {−1, 1} and the distribution of z2(t) is given as

Pr(z2(t)) =


|⟨0|ψ̃(t)⟩|2, z2(t) = 1,

1− |⟨0|ψ̃(t)⟩|2, z2(t) = −1.

(4.37)

Now the updated control parameter is given as

D2(t) = z2(t), (4.38)

since we are working at the ideal detector limit where γ2 → ∞. The post measurement state after

detector 2 measurement |ψ′(t)⟩ is given as

|ψ′(t)⟩ =


|0⟩ , z2(t) = 1,

(1̂− |0⟩⟨0|)|ψ̃(t)⟩, z2(t) = −1.

(4.39)

Since we are working in the ideal charge detection approximation, the quantum state
∣∣∣ψ̃(t)〉 is

either |0⟩ or of the form cL(t) |L⟩+cR(t) |R⟩, and thus the post-measurement state |ψ′(t)⟩ remains

unchanged from the state
∣∣∣ψ̃(t)〉 under the measurement by detector 2.

State Update:
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The final time-evolved state |ψ(t+ dt)⟩ can be obtained by the stochastic evolution equa-

tion

|ψ(t+ δt)⟩ =
4∑

k=0

dNk(t)
ĉk(D1(t), D2(t)) |ψ′(t)⟩
|ĉk(D1(t), D2(t)) |ψ′(t)⟩ |

, (4.40)

where ĉ1 =
√
γL(ϵL) |L⟩⟨0|, ĉ2 =

√
κL(ϵL) |0⟩⟨L|, ĉ3 =

√
γR(ϵR) |R⟩⟨0|, ĉ4 =

√
κR(ϵR) |0⟩⟨R|

and ĉ0 = e−iδtĤeff , where, ϵL/R ≡ ϵL/R(D1(t), D2(t)) and the effective non-unitary Hamilto-

nian Heff(D1(t), D2(t)) is given by Eq. (4.15). The matrix representation of the operator ĉ0 is

calculated numerically by direct exponentiation of the matrix −iδtHeff(D1(t), D2(t)). Each of

the stochastic variables are defined by the Eqs. (4.13) and (4.14). To simulate this step, first the

stochastic variable corresponding to No-Jump evolution dN0(t), is sampled as

Pr(dN0(t)) =


δt
∑4

k=1⟨ψ′(t)|ĉ
†
kĉk|ψ′(t)⟩, dN0 = 0

1− δt
∑4

k=1⟨ψ′(t)|ĉ
†
kĉk|ψ′(t)⟩, dN0 = 1.

(4.41)

If the sampling results in dN0(t) = 1, then the updated state is calculated directly as

|ψ(t+ δt)⟩ = ĉ0|ψ′(t)⟩
|ĉ0|ψ′(t)⟩|

. (4.42)

If the sampling results in dN0(t) = 0 then another Monte Carlo step is made to determine which

jump is happening by sampling the variable k∗ where k∗ ∈ {1, 2, 3, 4}. The distribution of k∗ is

given as,

Pr(k∗) =
⟨ψ′(t)|ĉ†k∗ ĉk∗|ψ′(t)⟩∑4
k′=1⟨ψ′(t)|ĉ

†
k′ ĉk′|ψ′(t)⟩

, k∗ ∈ {1, 2, 3, 4}. (4.43)
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Then the quantum state is updated by applying the corresponding jump operator to k∗ as,

ψ(t+ δt) =
ĉk∗|ψ′(t)⟩
|ĉk∗|ψ′(t)⟩|

. (4.44)
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Chapter 5: From the feedback-controlled DQD demon to autonomous informa-

tion ratchet

This chapter is adapted from an independent research project that has been published as the

paper “From a feedback-controlled demon to an information ratchet in a double quantum dot”

[2]. This project started as a spin-off of the IaF project related to the DQD Maxwell’s demon.

Here we convert the classical version of the model discussed in Chapter 4 to an autonomous

Maxwell’s demon and and identify and analyze its modes of operation..

5.1 Chapter overview

In this chapter we use the double quantum dot (DQD) electronic Maxwell’s demon model

from Ref. [4], which we refer to in this chapter as the Annby-Andersson (AA) model, to develop

and illustrate a general strategy for converting a non-autonomous, feedback-controlled model

of Maxwell’s demon into an autonomous, memory-tape model, or information ratchet, as illus-

trated schematically in Fig. 5.1. A number of authors have previously explored the connections

between feedback-controlled and memory-tape models [27, 33, 89, 102, 103]. Horowitz et al

[89] designed a feedback-controlled information motor based on the system-bit interactions of

Ref. [15]. Barato and Seifert [27, 28] discussed a stochastic-thermodynamics [49] framework that

encompasses both feedback-controlled and memory-tape models. Shiraishi et al [103] showed
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Figure 5.1: Two paradigms of Maxwell’s demon. The left figure depicts the AA model, a
feedback-controlled model. On the right we show the corresponding memory-tape model or
information ratchet. In both cases, heat from a thermal reservoir is converted to work, either
through measurement and feedback, or through interaction with an information reservoir. We
explore a strategy to convert a feedback-controlled model to a memory-tape model. The figure is
taken from Ref. [2].
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that the measurement-feedback model introduced in Ref. [89] can be reduced to the simplified

MJ model of Ref. [26, 27, 28]. Strasberg et al [33] described a system with a spin-valve and a

quantum dot that can mimic the thermodynamic behaviour of the MJ model and can be mapped to

a Brownian ratchet. They also presented a feedback-controlled model that captures the effective

dynamics of the corresponding memory-tape model, and they compared how the second law of

thermodynamics applies to these two paradigms.

Our approach uses network-based modelling [49, 104] of a system of master equations,

originally introduced by Schnakenberg[69], to show how a non-autonomous demon with a seem-

ingly complicated feedback protocol can systematically be modified to construct a memory-tape

model that mimics its behavior. We then present a theoretical analysis of the resulting memory-

tape model. Our model has distinct regions in parameter space where it operates either as an

information engine or as a Landauer eraser. We solve the model exactly in the limit when each

bit interacts with the DQD for an infinite amount of time, obtaining analytic expressions for

thermodynamic quantities and critical parameter values. We also semi-analytically explore the

finite time bit-interaction situation and construct the corresponding phase diagrams. Lastly, we

discuss a scheme for the stochastic simulation of memory-tape models and use it to simulate our

model and to verify our semi-analytical results. We limit our discussion to a completely classical

stochastic model and leave quantum models as a future avenue for research.

This chapter is organized as follows. Details of network-based stochastic modelling [49,

69, 104] are presented in Sec. 5.2. In Sec 5.2.1 we map the AA model to a nine-state network by

converting its control parameter to a stochastic variable. In Sec. 5.2.2 and Sec. 5.2.3, we discuss

how to couple the DQD with incoming bits to mimic the behavior of the feedback-controlled

demon. A summary of the general modelling scheme is presented in Sec. 5.2.4. The analysis of
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Figure 5.2: States of the double quantum dot system x ≡ (λ, σ) and the protocol (CAA) for the
AA model. Feedback steps (changes in λ, i.e, steps (b), (d) and (f)) are shown using double
arrows, and electron jumps (changes in σ, i.e, steps (a), (c) and(e)) are shown using single arrow.
The figure is taken from Ref. [2]

memory-tape models is discussed in Sec. 5.3.1. In Sec. 5.3.2 we discuss the thermodynamics of

our model and solve for analytical expressions of thermodynamic quantities in Sec. 5.3.3. Phase

diagrams of operational modes are discussed in Sec. 5.3.4 and the stochastic simulation scheme

for the model is presented in Sec. 5.3.5. Finally a discussion of the content of this chapter and

some related future research directions are discussed in Sec. 5.4
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(𝜖0 − 𝜇𝑅)
(𝜇𝐿 − 𝜖0)

𝜖𝑢
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Figure 5.3: Reduced network Gr = (Vx,Ex). Energies of the states in Vx are shown to the
right of the network. Edges shown in red correspond to the feedback steps of the original AA
model, and involve the flipping of the bit in the memory-tape model. The edges shown in blue
correspond to the transitions where the electron hops into (out of) the DQD from (to) an electron
reservoir and the dotted arrows show the corresponding energy exchange. The figure is taken
from Ref. [2]
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5.2 Memory-tape model of Maxwell’s demon in DQD system

The (ideal classical) protocol of the AA model has been reviewed previously in Sec. 4.2.1

and here we show it again in Fig. 5.2, where electron transition events are indicated by single

arrows, and feedback steps by double arrows. The labels of the arrows in Fig. 5.2 refer to the

steps of the protocol discussed in Sec. 4.2.1. The states in Fig. 5.2 that are not included in the

ideal protocol for the AA model are relevant for the memory tape model, as discussed later in

this chapter.

5.2.1 DQD demon with thermal feedback control

5.2.1.1 DQD+controller joint state space: the reduced network

We now construct a network representation of the states of the AA model, as a first step

toward designing a corresponding memory-tape model. In the AA model, the DQD occupa-

tion state σ is a dynamic variable with three possible states, σ ∈ Σ = {L,E,R}, as described

in Sec. 4.2.1. (Here the state E correspond to ket0 of Chapter. 4). The DQD energy config-

uration λ acts as a control parameter, also with three possible states: λ ∈ Λ = {A,B,C}

where A ≡ (ϵ0, ϵu), B ≡ (ϵl, ϵl) and C ≡ (ϵu, ϵ0). Combining the energy configurations

and the occupation states leads to nine possible states for the DQD state variable: x ∈ Vx =

Λ ×Σ = {AL,AE, · · ·CR}. The ideal cyclic protocol CAA, described above, follows the path

AE −→ AL =⇒ BL −→ BR =⇒ CR −→ CE =⇒ AE, where double arrows signify

feedback steps; see Fig. 5.2.

We now consider a situation in which the energy configuration λ is no longer a control
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parameter, but instead is a dynamical variable on the same footing as the occupation state σ. In

our model, the entire system is maintained at a temperature T using a thermal bath, and λ is

now a stochastic variable that evolves under the effect of the thermal noise from the bath. The

system-variable x ≡ (λ, σ) evolves among the nine states in Vx as a continuous time Markov

jump process. We justify the Markov assumption by assuming that the system-bath coupling

is weak and the correlations between the system and the bath decay on a timescale faster than

that of the jumps. We make the following assumptions about our model: (i) The elementary

transitions in our process involve a change in either λ, or σ, but not both simultaneously, i.e., the

system is bipartite [104]. (ii) If λ = B, then the excess electron cannot hop into or out of the

electron reservoirs; thus, the transitions BE ↔ BL and BE ↔ BR are not allowed. (iii) Direct

transitions between A and C states are forbidden. These assumptions are modelling choices, but

all of the forbidden transitions can be justified physically by assuming sufficiently high energy

barriers between corresponding states.

Under these assumptions, we obtain a network Gr = (Vx,Ex) where Vx ≡ V (Gr) is the

set of 9 vertices and Ex ≡ E(Gr) is the set of 11 bidirectional edges (see Fig. 5.3), describing

the stochastic dynamics [49, 69, 104] of the variable x ≡ (λ, σ). The subscript r in Gr indicates

a reduced 9-state network, in contrast with a full 18-state network Gf to be defined later. As the

control parameter λ is now converted to a stochastic variable which evolves under the thermal

noise, the state x ≡ (λ, σ) will not in general follow the protocol CAA and is free to explore all

the states in the network Gr.
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5.2.1.2 Dynamics in the reduced network

We set the energies of the empty states AE,BE,CE to zero and assign energies to all

other states based on the energy level of the dot that contains the electron: states BL and BR

have energy ϵl; states AL and CR have energy ϵ0; and states AR and CL have energy ϵu, with

ϵl < ϵ0 < ϵu as in Sec. 4.2.1. We impose the condition of local detailed balance on the transition

rates for the thermal transitions xi ↔ xj with xi, xj ∈ V (Gr), when there is no exchange of

electron with the left or the right reservoir:

Rr
xixj

Rr
xjxi

= e−β(E
r
i−Er

j ) , (5.1)

where β = (kBT )
−1 is the inverse temperature, and the superscript r again refers to the reduced

network. Er
i (Er

j ) is the energy of the state xi (xj) and Rr
xixj

is the transition rate for the jump

xj → xi. The right-hand side of Eq. (5.1) is the ratio of probabilities of the system being in state

xi and xj , in the canonical ensemble. Strictly speaking, the DQD system is quantal in nature

and the tunneling events of the excess electron between two dots (i.e., σ = L ↔ σ = R) are

coherent transfers, a purely quantal phenomenon (see Chapter 4 for discussion on the quantum

model). However, in our model we treat these events as classical thermal jumps in the spirit of

Ref. [4]. Thus, we assume the local detailed balance relation Eq. (5.1) for the edges: AL ↔

AR, BL↔ BR and CL↔ CR.

When an electron jumps from the right reservoir, maintained at the chemical potential µR to

the energy level ϵ0 of the right dot, there is an energy cost of (ϵ0−µR) and similarly if an electron

jumps from the level ϵ0 of the left dot to the left electron reservoir set at the chemical potential
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µL the energy exchange is (µL− ϵ0). Thus for the transitions AL↔ AE and CR ↔ CE (shown

in blue in Fig. 5.3), we can write the local detailed balance relations as,

Rr
AE AL

Rr
AL AE

= e−β(µL−ϵ0),

Rr
CR CE

Rr
CE CR

= e−β(ϵ0−µR).

(5.2)

The coupling with the electron reservoir creates thermodynamic forces [49, 69, 105, 106] in Gr

and leads to violation of global detailed balance when µL ̸= µR. When Eqs. (5.1) and (5.2) are

satisfied and µL ̸= µR, the dynamics of x in Gr reach a non-equilibrium steady state (NESS)

[49]. In this state, electrons flow in the thermodynamically preferred direction, i.e., from the

right (left) reservoir to the left (right) reservoir when µR > µL (µL > µR), resulting in an overall

counterclockwise (clockwise) flow (which we will abbreviate as CCW (CW) flow throughout the

article) of probability current in Gr. This flow is in contrast with the feedback-controlled model,

which transfers electrons against the thermodynamically preferred direction. Therefore we next

consider how to couple the DQD to an information reservoir, in the form of a stream of bits, so

as to make the evolution of the DQD mimic that of the AA model.

5.2.2 Conversion to autonomous demon: bit-coupling strategy

Our information reservoir is a memory tape containing n classical bits. Each bit (b) can be

in one of the two states in B = {0, 1}. The energies of the two bit states are degenerate, and we

set them to zero. As in Ref. [15] the DQD interacts with a bit for an interval of duration τ , after

which the next bit arrives. We can visualize this process by imagining that the bits are placed,

equally spaced, on a tape that moves frictionlessly past the DQD, which interacts with the bit that
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is nearest to it at any given time.

In our model the coupling between the DQD and the bit occurs along the four edges of

Gr that correspond to instant feedback steps in the AA model. These edges are shown in red in

Fig. 5.3. (Note that we have split the CE =⇒ AE feedback step of the original AA model

into two steps: CE ↔ BE and BE ↔ AE in our model.) Specifically, the DQD transitions

corresponding to these four edges can occur only when the state of the interacting bit b also flips.

We set up the coupling rules so that CW flow of probability current along CAA is favoured when

b flips from 0 to 1, and CCW flow is favored when b flips from 1 to 0. For example, the transition

AL→ BLmust be accompanied by a bit flip 0 → 1, and the reverse transitionBL→ AL occurs

only if the interacting bit flips from 1 to 0. Similar comments apply to the edges BR ↔ CR,

CE ↔ BE and BE ↔ AE. These DQD-bit coupling rules are indicated by curved red arrows

in Fig. 5.3. With this coupling scheme, an excess of 0’s in the incoming bit stream biases the

flow of probability in the CW direction. This bias opposes the thermodynamic direction of the

probability current when µR > µL. Similarly, if µL > µR then an excess of 1’s opposes the

thermodynamic direction of the probability current.

5.2.3 Details of the memory-tape model

5.2.3.1 DQD+controller+bit joint state space: full network

The joint evolution of the DQD state (x) and the nearest bit (b) occurs in the bit-coupled

network Gf = (Vy,Ey), which call as the full network; see Fig. 5.4. Here Vy ≡ V (Gf ) = Vx ×

B is the set of vertices representing the 18 possible states of the variable y = (x, b) ≡ (λ, σ, b),

and Ey ≡ E(Gf ) is the set of 18 bidirectional edges that reflect on the bit-coupling rules described
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Figure 5.4: Full network Gf = (Vy,Ey) showing all 18 states of the combined DQD and bit. The
full network Gf is obtained from Fig. 5.3 by accounting for the bit-coupling in Gr. The states in
the full network are given by Vy = Vx ×B and the edges follow directly from the edges of the
network Gr, and the mapping of the edges is described in the Sec. 5.2.3.1. Equation (5.6) governs
the dynamics of the variable y ≡ (λ, σ, b) in this network. The figure is taken from Ref. [2]
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in Sec. 5.2.2. Each edge of Gr that does not involve bit coupling is represented by two different

edges of Gf , corresponding to the two possible bit states. That is, an edge xi ↔ xj ∈ E(Gr)

corresponds to the edges (xi, 0) ↔ (xj, 0) and (xi, 1) ↔ (xj, 1) in E(Gf ), when xi ↔ xj does

not involve bit coupling. An edge x′i ↔ x′j ∈ E(Gr) that is coupled to the bit transition 0 ↔ 1

is mapped to only one edge, (x′i, 0) ↔ (x′j, 1) ∈ E(Gf ). There are four such edges in Gf :

BE0 ↔ AE1, AL0 ↔ BL1, BR0 ↔ CR1, and CE0 ↔ BE1; see Figs. 5.3 and 5.4.

5.2.3.2 Dynamics in the full network and repeated bit interaction

As the b = 0 and 1 bit states are energetically degenerate, the transition rates for the edges

in E(Gf ) obey the same detailed balance conditions as the corresponding edges in E(Gr). Edges

yi ↔ yj in E(Gf ) with no electron reservoir coupling satisfy

Ryiyj

Ryjyi

= e−β(Ei−Ej), (5.3)

where Ei and Ej are the energies of the states yi and yj respectively (compare Eq. (5.3) with

Eq. (5.1)). When there is coupling with the electron reservoirs, the local detailed balance relations

are given as,

RAE0 AL0

RAL0 AE0

=
RAE1 AL1

RAL1 AE1

= e−β(µL−ϵ0),

RCR0 CE0

RCE0 CR0

=
RCR1 CE1

RCE1 CR1

= e−β(ϵ0−µR).

(5.4)

(compare Eq. (5.4) with Eq. (5.2)). Equations (5.3) and (5.4) ensure the thermodynamic consis-

tency of the model, but do not yet completely specify the dynamics of y. We assume that the
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timescale of the stochastic dynamics of y due to thermal jumps is on the order of unity, and our

choice of the transition rates consistent with Eqs. (5.3) and (5.4) are shown in Table 5.1. Ap-

pendix 5.5 presents a detailed discussion of the choice of the transition rates and corresponding

timescales.

During every interaction interval of duration τ , the joint dynamics of the DQD and bit are

described by a Markov jump process for the state variable y = (x, b) in Gf , with transition rates

shown in Table 5.1. In a continuous time Markov jump process, the jump times follow a Poisson

distribution as discussed in detail in Appendix 5.7. At the end of each interaction interval, when

a new bit bin arrives, the state of the DQD x remains unchanged, and the state of the interacting

bit b takes on the value of the incoming bit bin. Thus when the outgoing and incoming bit states

differ, there is an effective virtual jump, due to the fact that the “old” interacting bit is replaced

by the next bit in the memory tape.

5.2.4 Summary of the modelling strategy

Here we summarize our approach for creating an autonomous, memory-tape model of

Maxwell’s demon from the non-autonomous, feedback-controlled AA model. We first create

a network representation of the states of the feedback-controlled model by identifying the dy-

namical states of the system (σ ∈ Σ) and the states of the control parameter (λ ∈ Λ). We then

convert the control parameter λ to a stochastic dynamic variable that jumps among the states of

Λ. The joint state of the system and parameter is given by x ≡ (λ, σ) ∈ Vx. The next step is

to identify a network Gr = (Vx,Ex) whose edges correspond to possible transitions. For ther-

modynamic consistency, the transition rates must satisfy Eqs. (5.1) and (5.2). There is no unique
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way to construct the network Gr and different choices of the allowed transitions lead to different

memory-tape models. For our DQD system, we focused on designing a model that mimics the

feedback-controlled model’s behavior, and is simple enough for analytical and semi-analytical

treatment.

Next, the DQD is connected to a sliding memory-tape (information reservoir). By inter-

acting with only the nearest bit on the tape, the DQD interacts with each bit for a fixed time τ .

During that time, the coupling between the DQD and the interacting bit b occurs along those

edges in the network Gr that correspond to the instantaneous feedback steps of the AA model.

The bit coupling rules are chosen so that incoming bits in the 0 state bias the resulting current in

one direction (CW in our model) and incoming bits in the 1 state bias it in the other direction.

In this way a memory tape with a surplus of 0’s or 1’s generates an effective force, which can

be harnessed to oppose the thermodynamic forces arising from reservoirs at different chemical

potentials.

The joint state of the DQD and interacting bit is described by a variable y ≡ (x, b) that

evolves by a Markov jump process in the network Gf = (Vy,Ey). As we assume the bit states

0 and 1 to be energetically degenerate, the transition rates in the Gf follow from those in Gr; see

Eqs. (5.3) and (5.4).

While we illustrate our strategy with the AA model and a specific network structure of

its dynamics, this approach can be implemented with other feedback controlled models where

an underlying network structure can be identified and then modified in a similar fashion as our

approach, to obtain a memory-tape model.
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Table 5.1: Transition rates for jumps of the variable y in Gf . Ryiyj denotes the transition rate
from yj to yi. Here we have taken r = e−βϵ with ϵ = (ϵu − ϵ0) = (ϵ0 − ϵl). These rates are used
construct the matrix R which is shown in Eq. (5.34) in Appendix 5.6

.

RCL0 CR0 = r
RCR0 CL0 = 1
RCL1 CR1 = r
RCR1 CL1 = 1
RBL0 CL0 = 1
RCL0 BL0 = r2

RBL1 CL1 = 1
RCL1 BL1 = r2

RBL0 BR0 = 1
RBR0 BL0 = 1
RBL1 BR1 = 1
RBR1 BL1 = 1
RAR0 BR0 = r2

RBR0 AR0 = 1
RAR1 BR1 = r2

RBR1 AR1 = 1
RAL0 AR0 = 1
RAR0 AL0 = r
RAL1 AR1 = 1
RAR1 AL1 = r

RAE0 AL0 = e−β(µL−ϵ0)

RAL0 AE0 = 1
RAE1 AL1 = e−β(µL−ϵ0)

RAL1 AE1 = 1
RCR0 CE0 = 1

RCE0 CR0 = e−β(µR−ϵ0)

RCR1 CE1 = 1
RCE1 CR1 = e−β(µR−ϵ0)

RBE0 AE1 = 1
RAE1 BE0 = 1
RCE0 BE1 = 1
RBE1 CE0 = 1
RAL0 BL1 = r
RBL1 AL0 = 1
RBR0 CR1 = 1
RCR1 BR0 = r
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5.3 Analysis and results

5.3.1 Methods

Following Ref. [15], let p(tn) be a column vector with nine entries that describes the prob-

ability distribution of the states of the DQD state variable x in Gr (in the order AE, BE, CE,

BL, BR, AL, CR, AR, CL) at time tn ≡ nτ that marks the start of an interaction interval.

Each incoming bit is independently sampled from the same probability distribution, with p0 (or

p1) denoting the probability of the bit to arrive in state 0 (or 1). It is convenient to specify this

distribution by the single parameter δ = p0 − p1, which measures the excess of 0’s among the

incoming bits. The statistical state of the variable y ≡ (x, b) in Gf at time tn (just after the arrival

of the n’th bit) is given by the 18-dimensional vector

pf (tn) = Mp(tn), M =

p0I
p1I

 , (5.5)

with I being a 9 × 9 identity matrix. The first nine elements of pf (t) correspond to the bit state

b = 0 and the last nine elements to the the state b = 1. From t = tn to tn+1 the probability

distribution in Gf evolves under the master equation

d

dt
pf (t) = Rpf (t), (5.6)

where R is the 18 × 18 rate matrix whose off-diagonal elements are the transition rates listed in

Table 5.1, and whose diagonal elements areRyiyi = −
∑

yj ̸=yi Ryjyi; see Eq. (5.34) for an explicit

expression for R. At the end of the interaction interval, just before the next bit arrives, the joint
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probability distribution is obtained from the solution of Eq. (5.6), namely

pf (tn + τ) = eRτMp(tn). (5.7)

To obtain the probability distribution of x in Gr at the end of the interaction interval, we

project from the 18-state network Gf to the 9-state network Gr,

p(tn + τ) = PDe
RτMp(tn), PD =

(
I I

)
. (5.8)

Equivalently,

p((n+ 1)τ) = Tp(nτ), T = PDe
RτM. (5.9)

This transition matrix T (which depends on the parameter τ ) evolves the probability distribu-

tion of x in Gr over a single interaction interval. The evolution over n successive intervals is

described by the transition matrix Tn. From the Perron-Frobenius theorem [107] it follows that

any distribution p in Gr evolves asymptotically to a unique periodic steady state

qpss = lim
n→∞

Tnp . (5.10)

The periodic steady state qpss is a function of the interaction interval τ , and can be calculated by

solving for the invariant vector of the matrix T,

T qpss = qpss. (5.11)
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Once the periodic steady state for the DQD has been reached, the joint state of the DQD

and bit at the start of every interaction interval is given by Mqpss, and the joint state at a time

tn +∆t, with 0 ≤ ∆t < τ , is

pf (tn +∆t) = eR∆tMqpss . (5.12)

For the remainder of this chapter, when analyzing the behavior of our model, we will assume that

the periodic steady state has been reached.

5.3.2 Thermodynamics of the memory-tape model

5.3.2.1 Calculation of work

Let the circulation Φ(τ) denote the average number of electrons transferred from the left

to the right reservoir during each interaction interval. The average chemical work performed by

the DQD system per time interval τ is then

W (τ) = (µR − µL)Φ(τ). (5.13)

If the sign of µR − µL is the same as that of Φ(τ), then electrons flow from the lower to higher

chemical potential, that is against the thermodynamic force. From Fig. 5.3 we see that

Φ(τ) =

∫ τ

0

dt JrCR→CE =

∫ τ

0

dt JrCE→BE

=

∫ τ

0

dt JrBE→AE =

∫ τ

0

dt JrAE→AL,

(5.14)
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where Jrxj→xi ≡ Jrxixj is the probability current along xj → xi in Gr, projected from the corre-

sponding currents in Gf . We can determine Φ(τ) by calculating any one of these integrals.

The probability current along yj → yi of Gf is

Jyiyj = Ryiyjpyj(t)−Ryjyipyi(t). (5.15)

When two edges xj0 ↔ xi0 and xj1 ↔ xi1 in Gf correspond to the edge xj ↔ xi in Gr, we have

Jrxixj(t) = Jxi0 xj0(t) + Jxi1 xj1(t), (5.16)

but when the transition xj → xi is coupled with a bit flip b′ → b′′, we have

Jrxixj(t) = Jxib′′ xjb′(t). (5.17)

Since the CE ↔ BE transition is coupled to the bit flit 0 ↔ 1, the edge CE ↔ BE in Gr

corresponds to a single edge, CE0 ↔ BE1 in Gf , hence

Φ(τ) =

∫ τ

0

dt JrBE CE =

∫ τ

0

dt JBE1 CE0. (5.18)

Moreover, since BE1 is connected to only one edge, CE0 ↔ BE1, we have ṗBE1 = JBE1 CE0;

see Fig. 5.4. Therefore,

Φ(τ) =

∫ τ

0

dt ṗBE1 = [pBE1(τ)− pBE1(0)]

=
[(
eRτ − I

)
Mqpss

]
y=BE1

, (5.19)
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where we have used Eq. (5.12) to get to the second line. We will use this result in Sec. 5.3.3.1.

5.3.2.2 Calculation of entropy change of the bit

Let p′0 and p′1 denote the probabilities of the outgoing bit to be in the states 0 and 1. These

values are determined by summing over the appropriate states y = (x, b) in Gf at the end of an

interaction interval:

p′0 =
∑

x∈V (Gr)

(eRτM qpss)y=(x,0)

p′1 =
∑

x∈V (Gr)

(eRτM qpss)y=(x,1) .

(5.20)

The parameter

δ′ = p′0 − p′1, (5.21)

specifies the distribution of the outgoing bit. The entropy corresponding to this distribution is

S ′ = −
∑

i=0,1 p
′
i ln p

′
i, while that of the incoming bit is S = −

∑
i=0,1 pi ln pi. Thus in the

periodic steady state, the change in single-symbol entropy [39] of the interacting bit is ∆S =

S ′ − S. Because ∆S does not account for correlations that develop between successive outgoing

bits, it provides only an upper bound on the net entropy change (per bit) of the information

reservoir. We discuss this point in detail in the next section (5.3.2.3), in the context of the second

law of thermodynamics.
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5.3.2.3 The first and the second laws of thermodynamics

In the periodic steady-state, the change in the internal energy of the DQD over one inter-

action interval is zero, on average. If chemical work is performed by the flow of electrons from

low to high chemical potential, then the energy required for this process must be extracted as heat

from the thermal reservoir that maintains the entire system at a fixed temperature T . We write

the first law of thermodynamics at the periodic steady state for this model as

Q(τ) = W (τ) = (µR − µL)Φ(τ), (5.22)

where Q(τ) is the average heat extracted from the thermal reservoir, per interaction interval.

In Refs. [39, 40], a general form of the second law for information ratchets, called the

Information Processing Second Law (IPSL), was derived. In the periodic steady state the IPSL is

written as

(ln 2)∆hµ ≥ βW, (5.23)

where ∆hµ is the change in the Shannon entropy rate (see Refs. [39, 40]) and W is the average

work extracted during one interaction interval. The entropy rate ∆hµ includes the effect of corre-

lations among the bits in the incoming and outgoing bit-streams. In our model we have assumed

that incoming bits are uncorrelated with each other and have been generated through a memory-

less [40] process. For finite τ , the outgoing bits become correlated with each other, and thus the

output is memoryful [40]. However, in the limit τ → ∞ these correlations become lost, and the

Shannon entropy rate ∆hµ reduces to the change in single-symbol entropy ∆S/(ln 2), hence for
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our model Eq. (5.23) becomes (in that limit)

∆S ≥ βW . (5.24)

Equation (5.23) is a general result for any memory-tape Maxwell demon and Eq. (5.24) is a

limiting case of the IPSL when correlations are neglected. When correlations are non-negligible,

Eq. (5.23) can identify functional modes of operation that are not indicated by Eq. (5.24); see

Refs. [39, 42, 44]. However, it is common to use the single symbol entropy for the analysis

of memory-tape models [15, 16, 26, 27, 33] and Eq.( 5.24) has been derived previously in the

context of Hamiltonian dynamics [17] and stochastic dynamics [28]. In our model, we ignore

the effect of the correlations among the bits for simplicity and assume the validity of Eq. (5.24)

as an approximation to Eq. (5.23) even for finite τ . The analysis of the effect of correlations

among the bits and calculation of ∆hµ is outside the scope of this chapter; see Ref. [44] for

the ∆hµ calculation in context of the MJ model. Henceforth, by “entropy” we always refer to

single-symbol entropy unless otherwise specified.

5.3.3 Analytical results for τ → ∞

5.3.3.1 Thermodynamic quantities

There are two relevant time scales in our model. We have taken the time scale associated

with the thermal jumps in Gf , which are governed by Eq. (5.6), to be of order unity. The other

time scale is the parameter τ that defines how long the DQD interacts with each bit. From the
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Figure 5.5: Plots of ∆S/β and W when (a) δ is varied at fixed µR = 1.5 and µL = 0, and
(b) β∆µ is varied by changing µR at fixed µL = 0 and δ = 0.002. In both cases we set β =
1, r = e−1, ϵ0 = 0, and we take the limit τ → ∞. In both plots we see that ∆S ≥ βW
is satisfied. The regions corresponding to the information engine (∆S > 0,W > 0), Landauer
eraser (∆S < 0,W < 0) and dud (∆S > 0,W < 0) are shaded green, red and white respectively.
The figure is taken from Ref. [2]
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Perron-Frobenius theorem [107], we have

lim
τ→∞

eRτpf = Π, ∀ pf , (5.25)

where RΠ = 0. The expression for Π is given by Eq. (5.35) in Appendix 5.6. If τ is sufficiently

large then Eq. (5.11) becomes

q∞pss = lim
τ→∞

PDe
RτMqpss = PDΠ. (5.26)

Using Eqs. (5.35) and (5.26), we get

q∞pss = N
[
2κL
r

(κL + κR)

r

2κR
r

2

r2
2

r2
2

r

2

r
2 2

]T
,

N =
r2

4(1 + r + r2) + 3r(κL + κR)
,

(5.27)

where κL = e−β(µL−ϵ0), κR = e−β(µR−ϵ0), and r = e−βϵ with ϵ = (ϵu − ϵ0) = (ϵ0 − ϵl). Here

we have taken symmetric energy gaps in the dots for simplicity of calculation and conciseness of

results. The method of analysis would be the same if ϵu and ϵl were taken as free parameters.

In the τ → ∞ limit, the circulation (Φ∞) can be calculated using Eq. (5.19). The probabil-

ities pBE1(0) and pBE1(∞) are given by the BE1 elements of Mq∞pss and Π, respectively. Using

Eqs. (5.13), (5.19), (5.25) and (5.27) we get

W∞ =
N (µR − µL)

r

[(
1 + δ

2

)
κR −

(
1− δ

2

)
κL

]
. (5.28)

Using Eqs. (5.25), (5.20) and (5.21), we can describe the distribution of the outgoing bits as
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p′0,1 = (1± δ′)/2, where

δ′ =
r(κL − κR)

4(1 + r + r2) + 3r(κL + κR)
, (5.29)

which can be used to calculate the entropy of the outgoing bits as S ′ = −
∑

i=0,1 p
′
i ln p

′
i ∈

[0, ln 2].

5.3.3.2 Operational mode phase diagram

In the limit τ → ∞, bits in the outgoing bit-stream are uncorrelated and thus Eqs. (5.23)

and (5.24) are equivalent, and both the final distribution δ′ and the entropy of the outgoing bit

become independent of δ; see Eq. (5.29). The entropy change ∆S∞ ≡ limτ→∞(S
′ − S) is a

symmetric concave upwards function of δ with a negative value at its minimum (minδ{∆S∞} <

0) at δ = 0 when µL ̸= µR. Thus, in the region with |δ| < |δ′| (shaded red in Fig. 5.5a), we have

∆S∞ < 0 and W∞ < 0 (using Eq. (5.24)). By Eq. (5.29), we see that when

|δ| < |δ′| =
∣∣∣∣ r(κL − κR)

4(1 + r + r2) + 3r(κL + κR)

∣∣∣∣, (5.30)

information is erased from the incoming memory-tape, and the system consumes work, i.e., it

acts as a Landauer eraser. Therefore, for a given value of ∆µ = µR − µL, the Landauer eraser

region in the operational mode phase diagram is bounded by ±δ′, as indicated by the red regions

in Fig. 5.6

By Eq. (5.24), W∞ > 0 implies ∆S∞ > 0. Let δ∗ denote the value of δ at which Φ∞ =
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Figure 5.6: Analytically obtained phase diagram when τ → ∞. In the green region the system
operates as an information engine (∆S > 0,W > 0) and in the red region it acts as a Landauer
eraser. The critical parameter values δ∗, δ′ and −δ′ are shown as function of β∆µ with ∆µ =
µR − µL with µL = 0. We have taken ϵ0 = 0, β = 1 and r = e−1 here. The figure is taken from
Ref. [2]

.

W∞/∆µ changes its sign, for fixed µR and µL. Using Eq. (5.28) we obtain

δ∗ =
κL − κR
κL + κR

. (5.31)

Thus, W∞ > 0 when δ > δ∗ and µR > µL, or when δ < δ∗ and µR < µL. In these regions

of parameter space, shown in green in Fig. 5.6, the system produces work at the cost of writing

information to the memory-tape and the DQD acts as an information engine.

In the regions of parameter space where ∆S∞ > 0 > W∞, information is written to the

memory-tape and the system consumes work, hence the model is a dud [15].
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5.3.4 Semi-analytical results for finite τ

For finite interaction time τ , we can numerically diagonalize the transition rate matrix as

R = UDRV, where DR is diagonal and UV = VU = I . We then have

T = PDUe
DRτVM, (5.32)

and the evaluation of eDRτ is straightforward. Once T is obtained in this manner, the periodic

steady state qpss is calculated using Eq. (5.11), and thermodynamic quantities are determined as

described in Sec. 5.3.2.

Following this semi-analytical approach, we have obtained phase diagrams for different

values of τ , using the second law inequality Eq. (5.24), which is now the single symbol ap-

proximation to the IPSL in Eq. (5.23). Fig. 5.7 shows these phase diagrams. The competition

between the effects of bit-coupling (δ) and the thermodynamic bias (∆µ) determines the direction

of probability current, i.e, the sign of Φ, in the network. With increasing values of τ , the system

has more time to relax to the equilibrium state Π before a new bit arrives, and the phase diagram

approaches the one shown in Fig. 5.6.

In our model, the information engine region (W > 0) appears only in the first and third

quadrants of the phase diagrams. In these regions an increase in |∆µ| increases the effective

thermodynamic forces and suppresses the information engine region for a fixed value of δ, as

seen in Figs. 5.6 and 5.7.

For small values of τ , the frequency of the virtual jumps in Gf (see Sec. 5.2.3.2) increases,

as bits get replaced more frequently. These virtual jumps drive the probability current against the
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Figure 5.7: Numerically obtained phase diagrams for different values of the interaction time,
τ = 0.2, 2, 20 and 200. For finite τ , the final distribution of the memory-tape (δ′) depends on the
initial distribution (δ), but this dependence vanishes in the limit τ → ∞. With increasing τ , the
phase diagram approaches the one shown in Fig. 5.6. We have fixed r = e−1, β = 1, ϵ0 = 0. The
figure is taken from Ref. [2]
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thermodynamic force in Gr. Hence when τ is increased the information engine region decreases;

see Fig. 5.7.

The entropy S(δ) = −
∑

i pi ln pi, with p0,1(δ) = (1 ± δ)/2, is a concave downward

function with a maximum at δ = 0. As a result, when δ = 0 and δ′ ̸= 0 we have ∆S =

S(δ′) − S(δ) < 0. This explains why the Landauer eraser region (∆S < 0) contains the entire

δ = 0 axis in the phase diagram (except for the origin δ = β∆µ = 0, where ∆S = 0).

5.3.5 Stochastic simulation

We have also performed stochastic simulations of the system. The variable y = (λ, σ, b)

was initialized by sampling x = (λ, σ) from the distribution qpss, and b from the distribution δ.

During each bit interaction interval, y evolves under a Markov jump process, with the rates listed

in Table 5.1. At the end of each interval, the value of b is replaced by the (randomly sampled)

state of the incoming bit. See Appendix 5.7 for further simulation details.

Figs. 5.8a and 5.8b show work and entropy production when the system acts as a Landauer

eraser and as an information engine, respectively. The total change in entropy (
∑

n∆Sn) of

the memory-tape was calculated by summing the change in single symbol entropy over each bit

(∆Sn) in the memory-tape. Similarly, total work (
∑

nWn) was obtained by summing over the

work done over each interval (Wn). In these figures, the semi-analytical results obtained by the

approach described in Sec. 5.3.4 are represented by straight lines with slopes ∆S/τ and W/τ .

N = 105 trajectories were generated, and statistical errors in ∆Sn and Wn were calculated using

the bootstrap method, by resampling B = 105 times with replacements [108]. The increasing

errors in
∑

n∆Sn and
∑

nWn reflect the accumulation of statistical errors with each additional
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(b) Information Engine

Figure 5.8: Work and entropy production in (a) the Landauer eraser mode and (b) the information
engine mode. Semi-analytical results and stochastic simulation results are compared. ∆Sn and
Wn represent the change in single symbol entropy of the nth bit and average extracted work in
the nth interval. For all the simulations, we have taken β = 1, r = e−1 and ϵ0 = 0. Errors are
calculated with the bootstrap method. The figure is taken from Ref. [2]
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interaction interval.

5.4 Discussion

We have presented a strategy for constructing a memory-tape model of Maxwell’s demon,

from a feedback-controlled model. We have illustrated this strategy using the Annby-Andersson

model [4], a feedback-controlled Maxwell’s demon in a double quantum dot (DQD). In our ap-

proach, we replace the feedback controller with a stochastic variable evolving under the same

thermal environment as the DQD. We then couple our system to an information reservoir and

design suitable bit interaction rules to mimic the effects of the feedback controller. In analyzing

our model, we obtained an exact solution in the limit of infinitely long interaction time τ , and

used a semi-analytical approach involving numerical matrix diagonalization for finite τ . As illus-

trated by these results as well as stochastic simulations, our model can act both as an information

engine and as a Landauer eraser, for suitable parameter values.

Our research strengthens the connection between two paradigms of information thermody-

namics: Maxwell’s original, non-autonomous paradigm of a “nimble-fingered” demon perform-

ing feedback control at the level of thermal fluctuations; and the autonomous paradigm, due to

Bennett [12], in which the demon is replaced by a physical gadget, thermodynamically driven by

the continual randomization of a stream of bits (the memory-tape). In effect, given a demon, we

show how to design a gadget that mimics it.

Our approach makes use of the underlying network structure of a feedback-controlled sys-

tem, and it relates to recent stochastic thermodynamic studies of bipartite systems [104, 109, 110].

Specifically, the dynamics of y = (λ, σ, b) in Gf can be described as bipartite system dynamics
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by splitting y in two random variables: σ and x̄ ≡ (λ, b) that do not change simultaneously. This

is in contrast with the original MJ model [15] which lacks the bipartite structure; see [104].

Double quantum dot systems are promising candidates for the experimental implementa-

tion of information engines [66]. While there have been a number of realizations of feedback-

controlled demons [5, 59], experimental realizations of memory-tape models are yet to be ex-

plored. By showing how to design a memory-tape model that mimics a feedback controlled

system, our approach may be useful in the design of physical implementations of autonomous

information engines.

Although our analysis has been entirely at the level of classical stochastic dynamics, it

would be worth studying analogous quantum models (see e.g. [35]). A future research direction

might explore design principles for quantum analogs of the memory-tape model. Lastly, we

limited our discussion of the information-theoretic aspects of this model to the single symbol

entropy. The study of the effects of correlations among the bits offers another avenue for future

research.

5.5 Appendix: Transition rates and the detailed balance relations

Equations (5.3) and (5.4) together give ratios of the transition rates which guarantee the

thermodynamic consistency of the model but do not completely define the transition rates for the

dynamics of y in the network Gf . Thus, there is freedom in the choice of transition rates along

the edges of Gf as long as the ratios in Eqs. (5.3) and (5.4) are maintained. When there is no
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coupling with an electron reservoir, we have taken

Ryiyj = Γe−β(Ei−Ej),

Ryjyi = Γ

(5.33)

for Ei > Ej , which satisfies Eq. (5.3). The pre-factor Γ is the inverse-timescale of the thermal

jumps of the system and we have taken Γ = 1. For example the transition rates along the

CL0− CR0 edge are given as RCL0 CR0 = e−β(ϵu−ϵ0) = e−βϵ = r and RCR0 CL0 = 1, where we

have taken (ϵu − ϵ0) = (ϵ0 − ϵl) = ϵ and r = e−βϵ. We have assigned the rest of the rates in the

Table 5.1 in a similar fashion when there is no coupling with an electron reservoir.

When there is an exchange of electron with the dot and the electron reservoir (σ = L/R ↔

σ = E), Eq. 5.4 ensures the thermodynamic consistency of the transition rates. Here we use the

convention that when the electron enters the dot from the electron reservoir (σ = E → σ =

L/R) the transition rate is Γres, and when the electron leaves the dot to the electron reservoir

(σ = L/R → σ = E) the transition rates are given as Γrese
−β(µL/R−ϵ0) which is consistent with

Eq. (5.4). For simplicity we have also taken Γres = 1. Thus for example, RAE0 AL0 = e−β(µL−ϵ0)

and RAL0 AE0 = 1. The other transitions involving the electron reservoirs are similarly set, as

seen in Table 5.1.

Note that the shortest timescale of the dynamics of the thermal jumps is given as 1/max{Γ,Γres}

which we have taken as 1 in our model. It should be noted that the time scale of the thermal jump

is in general different from the duration of the bit interaction interval τ , which is another temporal

parameter of our model.
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5.6 Appendix: Rate matrix and unique stationary state for Gf

The rate matrix R and stationary distribution Π are (see next page)
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R =

−1 0 0 0 0 κL 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 κR 0 0 0 1 0 0 0 0 0 0 0

0 0 0 K1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 K2 0 0 1 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 K3 0 1 0 0 0 0 r 0 0 0 0 0

0 0 1 0 0 0 K4 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 r2 r 0 −2 0 0 0 0 0 0 0 0 0 0

0 0 0 r2 0 0 r 0 −2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 −2 0 0 0 0 κL 0 0 0

0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 κR 0 0

0 0 0 0 0 1 0 0 0 0 0 0 K2 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 K1 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 K5 0 1 0

0 0 0 0 r 0 0 0 0 0 0 1 0 0 0 K6 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 r2 r 0 −2 0

0 0 0 0 0 0 0 0 0 0 0 0 r2 0 0 r 0 −2



,

(5.34)
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Π =
r2

4(1 + r + r2) + 3r(κL + κR)



κLr
−1

κLr
−1

κRr
−1

r−2

r−2

r−1

r−1

1

1

κLr
−1

κRr
−1

κRr
−1

r−2

r−2

r−1

r−1

1

1



(5.35)

where κL = e−β(µL−ϵ0), κR = e−β(µR−ϵ0), K1 = −r2− 1, K2 = −r2− r− 1, K3 = −κL− r− 1,

K4 = −κR − r, K5 = −κL − r and K6 = −κR − r− 1. Here the states in V (Gf ) are ordered as

follows: (AE0, BE0, CE0, BL0, BR0, AL0, CR0, AR0, CL0, AE1, BE1, CE1, BL1, BR1,

AL1, CR1, AR1, CL1).
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5.7 Appendix: Details of stochastic simulation scheme

5.7.1 Poisson jumps

We implement the Gillespie Algorithm [111, 112, 113] to simulate the continuous time

Markov jump process for y in Gf , when the DQD system is interacting with a bit. If a system is

in state yj at time t, then the time interval for the next jump event is generated from the Poisson

distribution as follows:

∆t =
1∑

y ̸=yj Ryyj

ln
1

ξ1
(5.36)

where ξ1 is sampled uniformly in the interval (0, 1]. After remaining in the state yj over the time

interval [t, t +∆t), the system jumps to a new state (say yj′). To find yj′ , all states in V (Gf ) are

arranged in order (say, (0, 1, 2, .., 16, 17)), then j′ is chosen as the smallest integer label of the

ordered states that satisfies: ∑j′

i=0,yi ̸=yj Ryiyj∑
y ̸=yj Ryyj

> ξ2 (5.37)

where ξ2 is sampled uniformly in the interval (0, 1].

5.7.2 Virtual jumps

Virtual jumps occur when a new bit arrives. Specifically, if y = (xj, bn) at time t ∈

(nτ, (n + 1)τ), and if t + ∆t > (n + 1)τ , then instead of generating a jump using Eq. (5.37), a

new bit state is generated at time (n+ 1)τ .

The new incoming bit is sampled with probability p0 (p1) to be in state bn+1 = 0 (bn+1 = 1),

the state y is updated to yj′ ≡ (xj, bn+1), and the time is set to t = (n + 1)τ . We express this
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update rule as

b n+1 =


0, with probability p0

1, with probability p1

(5.38)

y ((n+ 1)τ) = (xj, bn+1) (5.39)

when t+∆t > (n+ 1)τ . If bn+1 ̸= bn then this update constitutes a virtual jump, otherwise the

state of y is unchanged.
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Chapter 6: Fast-forward shortcuts to adiabaticity in classical Floquet-Hamiltonian

systems - angle variable dynamics

The content of this chapter is based on independent research work and is yet to be pub-

lished.

6.1 Chapter overview

In contrast to the previous chapters, here we do not consider any model of Maxwell’s de-

mon. Instead, we consider a situation where the behavior of a time-dependent system with a

predefined protocol is modified to achieve a desired behavior without the intervention of an ex-

ternal agent. In the spirit of the discussion on autonomous demons presented in Chapters 1 and

5, we consider the shortcuts-to-adaibaticity (STA) problem [65] discussed here as a form of non-

feedback or open-loop control. We investigate STA in classical Floquet (periodic) Hamiltonian

systems where the system’s dynamics are accelerated while preserving features of the quasistatic

dynamics by adding an additional potential to the original Hamiltonian of the system. Among

different forms of STA for classical Hamiltonian systems we will focus the discussion of this

chapter on flow-field based methods [77, 114]. In this chapter we will extend the fast-forward

method of STA to periodically driven Hamiltonian systems in contrast to the protocol presented

in the Ref. [77], where a time-dependence of the Hamiltonian is turned on for a finite interval of
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time. Additionally it was pointed out in Ref. [77] that the microcanonical measure on the adia-

batic energy shell is not preserved under the evolution generated by the fast-forward Hamiltonian

unless the system is driven under a scale-invariant protocol. Here we investigate the dynamics

of a periodically driven system with a non-scale-invariant protocol and study the angle variable

dynamics using tools from chaotic dynamics and ergodic theory [73].

This chapter is organized as follows: in Sec. 6.2 we review shortcuts to adiabaticity for

classical Hamiltonian systems, following Refs. [65, 77]. In Sec. 6.3 we set up the theoretical

formalism for studying angle variable dynamics under a fast-forward Hamiltonian. In Sec. 6.4 we

present numerical studies for the angle variable dynamics for a periodically driven asymmetric

double well system, for two sets of parameters illustrating the behavior of the angle variable

dynamics with and without fixed points.

6.2 Background: classical flow-field based methods for shortcuts to adiabatic-

ity (STA)

Here we present a brief pedagogical review of flow-field-based methods for classical short-

cuts to adiabaticity and also introduce notation and ideas that will be used throughout the chapter.

We consider a time-dependent HamiltonianH(q, p, t) for a one-degree-of-freedom system, of the

form

H(q, p, t) =
p2

2
+ U(q, t), (6.1)

where time t varies in the window 0 ≤ t ≤ tf and we have taken mass m = 1. We assume

that at every time t, there exists a region St in the (q, p) phase space, where the system executes

libration [70] (periodic motion where the sign of q̇ changes), when the dynamics are generated by

156



the Hamiltonian H(q, p, t) frozen at time t. Additionally, we assume the energy level surfaces of

the frozen Hamiltonian H(q, p, t) have the same topology in St, and restrict our choice of initial

conditions (which will be discussed later) to this region only.

The action [70, 71, 115, 116] I(q, p, t) at any phase space point (q, p) ∈ St at time t is

given by

I(q, p, t) =
1

2π
Ω(H(q, p, t), t), (6.2)

where the Ω(E, t) gives the phase space area enclosed by an energy level surface of energy E

corresponding to the Hamiltonian H(q, p, t) frozen at time t, i.e.,

Ω(E, t) =

∫ ∞
−∞

∫ ∞
−∞

dq′dp′ θ [E −H(q′, p′, t)] , (6.3)

with θ(x) being the Heaviside step function. A trajectory (q(t), p(t)) evolving under the Hamil-

ton’s equations of motion generated by the time-dependent Hamiltonian H(q, p, t), does not pre-

serve the action, i.e. I(q(t), p(t), t) is not a constant of motion. However, for slowly driven

systems, the action I(q(t), p(t), t) becomes an adiabatic invariant [70, 71, 115] as we explain

briefly below.

We define the initial energy shell E0 corresponding to energy E0, and action I0 as

E(0) = {(q, p) ∈ S0 | H(q, p, 0) = E0}. (6.4)

Since the action variable is not a constant of motion, all of the initial conditions in E(0) will

not be mapped to a single level surface of the Hamiltonian H(q, p, tf ), when evolved under the

time-dependent Hamiltonian H(q, p, t) for an arbitrary time interval t = 0 to t = tf . However,
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under an infinitely slow (quasistatic) evolution under the same protocol, i.e., evolution under the

slow Hamiltonian H(q, p, ϵt) from t = 0 to t = (tf/ϵ) with ϵ→ 0+ , the initial energy shell E(0)

gets mapped to the adiabatic energy shell E(tf ):

E(tf ) = {(q, p) ∈ Stf | H(q, p, tf ) = Ead(tf )}, (6.5)

Here the adiabatic energy Ead(tf ) corresponds to the level surface of H(q, p, tf ), that contains

the area 2πI0:

Ω(Ead(tf ), tf ) = 2πI0. (6.6)

We see that the action I(q(t), p(t), t) for any point in E(tf ) is same the (I0) as that of any point

on initial energy shell E(0). If the evolution is slow but not infinitely slow, then the action is only

approximately preserved, |I(q(tf/ϵ), p(tf/ϵ), tf/ϵ) − I0| = O(ϵ2). Here action is an adaibatic

(quasistatic) invariant.

In Ref. [77], it was shown that, given the Hamiltonian H(q, p, t) and the initial action I0

(or equivalently initial energy E0), it is possible to construct flow-fields v(q, t; I0) and a(q, t; I0),

and correspondingly two new STA Hamiltonians: (i) the local counterdiabatic Hamiltonian

HLCD(q, p, t; I0), and (ii) the fast-forward Hamiltonian HFF(q, p, t; I0), which evolve E(0) →

E(tf ) in any arbitrary time interval t = 0 to t = tf , where E(tf ) is the adiabatic energy shell of

H(q, p, tf ). From now onward, throughout this chapter we will drop the parametric dependence

on I0 for the flow-fields and STA Hamiltonian for conciseness, but it is to be understood that

flow-fields and the STA Hamiltonians are always defined for a fixed I0. The local counterdiabatic
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Hamiltonian is defined as

HLCD(q, p, t) = H(q, p, t) +K(q, p, t) (6.7)

where K(q, p, t) is defined by the flow field as

K(q, p, t) = pv(q, t) (6.8)

The fast-forward Hamiltonian is given as

HFF(q, p, t) = H(q, p, t) + UFF (q, t) (6.9)

where UFF (q, t) is a potential that is defined by the flow field as

−∂UFF (q, t)
∂q

= a(q, t) (6.10)

While both HLCD and HFF evolve the initial energy shell E(0) to the target energy shell E(tf ),

there is a major difference between the dynamics generated by HLCD and HFF – while evolving

under HLCD, the initial conditions that started on E(0) remain on the instantaneous adiabatic

energy shell E(t) throughout the evolution from t = 0 to t = tf ; here, the instantaneous energy

shell is defined by the condition:

E(t) = {(q, p) ∈ St | H(q, p, t) = Ead(t)} (6.11)
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with Ead(t) satisfying

Ω(Ead(t), t) = 2πI0. (6.12)

In contrast, when evolving underHFF , initial conditions taken from E(0) in general do not remain

on the instantaneous adiabatic energy shell E(t) at intermediate times t ∈ (0, tf ), but they return

to the final target adiabatic energy shell E(tf ) at t = tf .

In the next section we will investigate shortcuts to adiabaticity in Floquet-Hamiltonian sys-

tems using the fast-forward approach. However, the discussion can alternatively be explored

through the local counterdiabatic approach. Here we briefly discuss how fast-forward and local

counterdiabatic Hamiltonians are related to each other. For any time t, if (q(t), p(t)) are evolving

under the Hamiltonian HLCD(q, p, t), then we can construct a time dependent canonical trans-

formation of variables from (q(t), p(t)) to (q̃(t), p̃(t)), given by the type-3 generating function

[70, 71]:

F3(q̃, p, t) = −q̃p−
∫ q̃

q̃0

dq̃′v(q̃′, t) (6.13)

and the relations q = −∂F3

∂p
and p̃ = −∂F3

∂q̃
with q̃0 as an arbitrary constant. With this transfor-

mation, it can be shown that the transformed variables (q̃(t), p̃(t)) evolve under the Hamiltonian

HFF(q̃, p̃, t). Also, the Hamiltonians HLCD(q, p, t) and HFF(q̃, p̃, t) are related to each other by

the generating function F3(q̃, p, t), as follows [70, 71]:

HFF(q̃, p̃, t) = HLCD(q, p, t) +
∂F3(q̃, p, t)

∂t
. (6.14)

In the most general case, q̃0 can be chosen as an arbitrary function of time q̃0(t), which will give

rise to a fast-forward Hamiltonian that differs from HFF by a pure function of time but generates
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the same equations of motion. At any time t, there will be a set of points EFF(t) in the (q̃, p̃)

phase space, which is an image of the adiabatic energy shell E(t) in the (q, p) phase space. Due

to the properties of the canonical transformation, EFF(t) will also have the same enclosed area

as the corresponding adiabatic energy shell E(t) [70]. Thus for the evolution under HFF (q̃, p̃, t),

we have a local dynamic invariant J(q̃, p̃, t) as,

J(q̃, p̃, t) =
1

2π

∮
EFF(t)

p̃ dq̃ = I0 (6.15)

for a fixed I0 at any time t ∈ [0, tf ]. Note that EFF(t) is not necessarily located on any energy

level surface of the Hamiltonian H(q, p, t), in contrast to E(t) which always remains on the

instantaneous adiabatic energy level surface of H(q, p, t). In the next section we discuss how the

fast-forward protocol can be applied to periodically driven systems.

6.3 Theory and methods: dynamical maps and transfer operator

6.3.1 Hamiltonian maps for fast-forward shortcuts to adiabaticity in Floquet

systems

In Ref. [77], the fast-forward protocol was developed for a time-dependent Hamiltonian,

where the time dependence is turned on for a finite interval of time and then turned off. Here we

set up the formalism for investigating the application of the fast-forward protocol to a periodically

driven, one-degree-of-freedom, classical Hamiltonian system. We define our system of interest

by the Hamiltonian

H(q, p, λ(t)) =
p2

2
+ U(q, λ(t)) (6.16)
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In contrast to the discussion in the previous section, in Eq. (6.16) we have introduced the time-

dependence in the Hamiltonian implicitly through a parameter λ(t), which is a periodic function

of time t with the period T :

λ(t) = λ(t+ T ). (6.17)

We assume that the Hamiltonian H(q, p, λ(t)) and the periodic driving λ(t) are continuous and

smooth functions of time t, such that all time derivatives of λ(t) and H(q, p, λ(t)) are well de-

fined. This assumption also implies

∂nH

∂tn
(q, p, λ(t)) =

∂nH

∂tn
(q, p, λ(t+ T )) . (6.18)

Under Hamiltonian dynamics, the state of a system z(t) = (q(t), p(t)) at anytime t is a

function of the initial conditions. Hamiltonian dynamics can also be described by Hamiltonian

maps (see Refs. [73, 115, 116] for general discussion on Hamiltonian maps). The state of the

system (a phase space point)

z(t) = (q(t), p(t))

is evolved for the time interval t to t+T under the HamiltonianH(z, λ(t)), then the evolved state

z(t+ T ) is related to the state z(t) by the Hamiltonian map MT as:

z(t+ T ) = MT (z(t); t) (6.19)

Since we are interested in time-periodic dynamics from t = nT to t = (n+ 1)T , we can express
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the dynamics through a discrete map

zn+1 = MT (zn), (6.20)

where zn = z(nT ), and MT stands for the Hamiltonian map generated by H(z, λ(t)) over

the evolution of one period. We have dropped explicit time-dependence in the map MT as we

are always considering periodic dynamics from the beginning of a time period t = nT to the

end of the period t = (n + 1)T . Here, MT is a two-dimensional invertible nonlinear map,

parameterized by the period T . Note that the action is not a conserved quantity under MT , i.e.,

I(zn, t = nT ) ̸= I(zn+1, t = (n+ 1)T ).

We aim to apply a fast-forward potential UFF (q, λ(t)) to the periodically driven system

H(z, λ(t)) such that a chosen energy shell E(t = nT ) ≡ En with action I0 and energy E0, gets

mapped to itself En → En+1 = En under the evolution generated by the fast-forward Hamiltonian

HFF (q, p, λ(t)) = H(q, p, λ(t)) + UFF (q, p, λ(t)) (6.21)

for any periodic interval t = nT to t = (n + 1)T . Similarly to the time-dependent flow-fields

discussed in the previous section (and also in Ref.[77]), we introduce two λ-parameterized flow

fields ṽ(q, λ) and ã(q, λ). For any given I0, the fast-forward potential is related to the flow-fields

by

ã(q, λ) = −∂UFF (q, λ)
∂λ

. (6.22)

We denote the periodic Hamiltonian map for the evolution generated by the fast-forward Hamil-

tonian HFF (q, p, λ(t)) from time t = nT to t = (n+1)T as MFF
T [I0]. Here, the I0 in the square
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bracket signifies that the UFF (q, p, λ(t)) has been constructed for the the energy shell correspond-

ing to the action I0 (and adiabatic energy E0). Evolution of the phase space point zn under this

Hamiltonian map is given as

zn+1 = MFF
T [I0](zn). (6.23)

The evolved point zn+1 lands on the adiabatic energy En+1 if the initial condition zn ∈ En. Here,

MFF
T [I0] is an invertible two-dimensional nonlinear stroboscopic map that evolves every point in

the full (q, p) phase space for one time period T , and also has a special property that the adiabatic

energy shell En gets mapped to itself: En+1 = En.

6.3.2 One-dimensional angle map (ΘFF
T,[I0]

) for dynamics on preserved energy

shell

Next, we will introduce a one-dimensional map [72, 73, 115] for studying the dynamics

of the angle variable on the energy shell En under the evolution by MFF
T [I0]. We consider the

canonical transformation of zn ≡ (qn, pn) to the action-angle variables yn ≡ (θn, In), which is

given by the type-2 generating function [70, 71]

F2(In, qn) =

∫ qn

q
(min)
n

dq p̄(q, In) (6.24)

and the relations pn = ∂F2

∂q
, θn = ∂F2

∂I
where θn ∈ [0, 2π). Here the function p̄(q, I) is implicitly

defined by H(q, p̄, λ(nT )) = Ead(nT ) and Ω(Ead(nT ), nT ) = 2πI; and q(min)
n is the left turn-

ing point of the adiabatic energy shell En, i.e., q(min)
n = minq′{q′ | p̄(q′, In) = 0}. Under this

canonical coordinate transformation (yn = g(zn)), the two-dimensional periodic evolution map
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Figure 6.1: Evolution of the energy shell S0 = {θ(j)0 |j = 1, ..,M} to S1 = {θ(j)1 |j = 1, ..,M}
for A = 14, τ = 1 and adiabatic energy E = 50. We have taken M = 1000 here. The points
in S0 are microcanonically distributed, i.e., uniformly spaced in in the angle variables θ(j)0 from 0
to 2π. The evolution under HFF is done using a symplectic integrator of fourth-order with time
step δt = 10−6.

165



MFF
T [I0] transforms to the conjugate map M̃FF

T [I0] = g ◦MFF
T [I0]◦g−1 in the new action-angle

coordinates [73], and we have:

yn+1 = M̃FF
T [I0](yn)

= M̃FF
T [I0](θn, In)

(6.25)

Now we fix In = I0 in the Eq. (6.25) to obtain the one-dimensional angle map on the adiabatic

energy shell as ΘFF
T,[I0]

(θ) ≡ M̃FF
T [I0](θ, I = I0). This angle map gives periodic evolution of the

angle variable θn for the fixed action In = I0, i.e.,

θn+1 = ΘFF
T,[I0]

(θn) (6.26)

6.3.3 Transfer operators for the evolution of the angle variable distribution

We can study the angle variable dynamics on the preserved energy shell by the transfer op-

erator method [117]. Suppose we randomly sample a set ofM angle variables Sn = {θ(i)}i=1,..,M

at t = nT , from the energy shell En according to the probability density function ηn(θ) where

θ ∈ [0, 2π); and evolve these points with the map ΘFF
T,[I0]

to obtain the new set Sn+1 = ΘFF
T,[I0]

(Sn).

If the points in the set Sn+1 are now distributed according to the probability density function

ηn+1(θ), then ηn+1(θ) is obtained from ηn(θ) by the transfer operator or the Ruelle-Perron-

Frobenius operator for the fast-forward dynamics P̂FF
T,[I0]

:

ηn+1(θ) = P̂FF
T,[I0]

ηn(θ) (6.27)
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Figure 6.2: Angle variable map θf = ΘFF
T,[I0]

(θi), corresponding to the energy shell evolution
shown in Fig. 6.1. θi is the initial angle coordinate and θf is the final angle coordinate. The angle
map ΘFF

T,[I0]
has been constructed from the points (θ(j)0 , θ

(j)
1 ) which are also plotted with the color

representing the initial location θ(j)0 . The identity map θf = θi is also shown using the dotted
line. Since θf = ΘFF

T,[I0]
(θi) does not intersect θf = θi, there is no fixed point under the evolution

of the map ΘFF
T,[I0]

(θi) for the parameters A = 14, E0 = 50.
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The action of the operator P̂FF
T,[I0]

in Eq. (6.27) can be expressed as the integral equation

ηn+1(θ) =

∫ 2π

0

dθ′ δ
(
θ −ΘFF

T,[I0]
(θ′)
)
ηn(θ

′) (6.28)

Eq. (6.28) is known as the Frobenius-Perron equation [73]. Since ΘFF
T,[I0]

is a bijective mapping,

we can write Eq.. (6.27) or Eq. (6.28) with the inverse function of ΘFF
T,[I0]

as

ηn+1(θ) =
ηn(θ

−1
f (θ))∣∣∣∂ΘFF

T,[I0]
(θ−1f (θ))

∣∣∣ (6.29)

where (ΘFF
T,[I0]

)−1 ≡ θ−1f is the inverse function of ΘFF
T,[I0]

, and ∂ΘFF
T,[I0]

stands for the derivative

function of ΘFF
T,[I0]

. Eq. (6.29) allows us to evolve the density ηn(θ′) to ηn+1(θ) when the func-

tions ∂ΘFF
T,[I0]

and θ−1f are known, and thus provides a method of iteratively evolving an angle

variable density with the Perron-Frobenius operator P̂FF
T,[I0]

. The invariant density [73, 117] of

the map ΘFF
T,[I0]

is given as ηs(θ) which is an eigenfunction of the Perron-Frobenius operator with

eigenvalue 1 :

P̂FF
T,[I0]

ηs(θ) = ηs(θ) (6.30)

We also point out that the adjoint (dual) to the Perron-Frobenius operator P̂FF
T,[I0]

is known as the

Koopman operator [117, 118], which gives the composition of a function with the map ΘFF
T,[I0]

and is often used in the control theory and engineering literature.
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Figure 6.3: Evolution of the energy shells. Parameters are same as Fig. 6.1 except with A = 18.
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Figure 6.4: Angle variable map θf = ΘFF
T,[I0]

(θi), corresponding to the energy shell evolution
shown in Fig. 6.3. Here, θf = ΘFF

T,[I0]
(θi) intersects θf = θi at two points: (θa, θa) and (θr, θr).

Thus there are two fixed points under the evolution of the map ΘFF
T,[I0]

(θi) for the parameters
A = 18, E0 = 50. Here we have |∂ΘFF

T,[I0]
(θa)| < 1 and |∂ΘFF

T,[I0]
(θr)| > 1, hence θa (θr) is an

attracting (repelling) or stable (unstable) fixed point of the map ΘFF
T,[I0]

.
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6.3.4 Transition probability matrix and evolution of probability distributions on

the energy shell

Instead of dealing with probability densities and Eq. (6.27), we discretize the angle variable

space and investigate the evolution of a probability measure in this discretized space following

Ulam’s method [117]. We discretize the angle variable space [0, 2π) into K ≫ 1 bins of uniform

size (2π/K) and label them j = 0, .., K − 1, and construct a histogram, represented by a prob-

ability vector P⃗n = [P0(nT ), P1(nT ), .., PK−1(nT )]
T . Here, Pj(nT ) represents the probability

that a point is in the jth bin, when it has been sampled from the distribution ηn(θ):

Pj(nT ) =

∫ 2π(j+1)/K

2πj/K

dθ ηn(θ). (6.31)

Now we define the transition probability Tij from the jth bin to the ith bin, as the probability of

a randomly sampled point from a uniform distribution (uj(θ)) over the jth bin:

uj(θ) =


K
2π
, 2πj

K
≤ θ < 2π(j+1)

K

0, otherwise

(6.32)

to land in the ith bin, when evolved under the map ΘFF
T,[I0]

. Hence, we have

Tij =

∫ 2π(i+1)/K

2πi/K

dθ P̂FF
T,[I0]

uj(θ)

=

∫ 2π(i+1)/K

2πi/K

dθ uj(θ
−1
f (θ))∣∣∣∂ΘFF

T,[I0]
(θ−1f (θ))

∣∣∣ .
(6.33)
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Collecting transition probabilities Tij in a matrix form we construct the transition probabil-

ity matrix T. For large enough K, the distribution uj(θ) approaches a delta function distribution,

and in that case the matrix T can be used to visualize the Kernel of the operator P̂FF
T,[I0]

. From

the Perron-Frobenius theorem we know that there is an invariant probability vector P⃗s which

corresponds to the Perron-Frobenius eigenvavalue sPF = 1 for the matrix T, and any starting

distribution q⃗ converges to it under the dynamics generated by T.

lim
n→∞

Tnq⃗ = P⃗s, TP⃗s = P⃗s, ∀q⃗ (6.34)

The eigenspectrum {si}i=1,...,K of the matrix T gives us information about the relaxation rate to

the invariant distribution for different eigenvectors of T. A zero eigenvalue implies instantaneous

decay of an eigenmode. For non-zero eigenvalues, smaller values of |si| imply faster convergence

towards P⃗s, and |si| ≈ 1 implies metastable eigenmodes, which take a long time to decay, and

non-zero Im{si} implies the cyclic nature of the eigenmode [119].

6.4 Toy model system

In this section we discuss the angle-variable dynamics and its statistical properties by nu-

merically investigating a toy model. Our toy model uses the same asymmetric double well po-

tential as Ref. [77] with a driving that is now periodic in time.
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Figure 6.5: The Fig. 6.5a shows the transition probability matrix T and the Fig. 6.5b shows
the evolution of probability distribution P⃗n = [Pj(nT )]

T
j=0,..,K−1 under the transition probability

matrix T; for parameters A = 14, τ = 1.0 and energy shell E = 50. We have created K = 100
bins and the index j = 0, .., K − 1 is used for the label of the bins. The starting distribution for
the evolution is taken as the uniform Pj(0) = (1/K). The evolved distribution P⃗n = TnP⃗0 are
plotted. The stationary distribution P⃗s has been calculated by solving TP⃗s = P⃗s.
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Figure 6.6: The Fig. 6.6a shows the transition probability matrix T and the Fig. 6.6b shows
the evolution of probability distribution P⃗n = [Pj(nT )]

T
j=0,..,K−1 under the transition probability

matrix T; for parameters A = 18, τ = 1.0 and energy shell E = 50. We have created K = 100
bins and the index j = 0, .., K − 1 is used for the label of the bins. The starting distribution for
the evolution is taken as the uniform Pj(0) = (1/K). The evolved distribution P⃗n = TnP⃗0 are
plotted. The stationary distribution P⃗s has been calculated by solving TP⃗s = P⃗s. The stationary
distribution P⃗s = [δjj∗ ]

T
j=0,..,K−1, where j∗ is the index for the bin containing the attractive fixed

point θa.
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6.4.1 Setup: periodically driven asymmetric double well

We consider a one-dimensional (1D) periodically driven double well system given by the

Hamiltonian H(q, p, λ(t)), which corresponds to evolution under the potential

U(q, λ(t)) = q4 − 16q2 + λ(t)q, (6.35)

with the driving protocol:

λ(t;A, τ) = A cos

(
tπ

τ

)
. (6.36)

The parameter A controls the strength of the driving and τ controls the speed of the driving.

To ensure the existence of the double well landscape of the potential at all time, we impose a

restriction: A ∈
(
−128

3

√
2
3
, 128

3

√
2
3

)
, which approximately corresponds to −34.8372 < A <

34.8372. This constraint also bounds the value of λ(t) for any time t, since |λ(t)| ≤ |A| for the

choice of our protocol. For any λ ∈ [−A,A] , there are three stationary points in the double well:

two minima corresponding to the left and right wells, qLmin(λ) and qRmin(λ), and a central maximum

qCmax(λ). The period of the driving is T = 2τ and thus smaller (larger) τ corresponds to faster

(slower) external driving. The dynamics under our choice of H(z, λ(t)) can be understood as a

particle executing motion under a driven double well potential where the depths of the wells of

the oscillator are periodically shifting due to an oscillatory slope in the linear term. At any time t,

the phase portrait corresponding to the frozen Hamiltonian H(z, λ(t)) has three different regions

separated by two homoclinic orbits, which meet at the fixed point z = (qCmax(λ), 0). The separatix

energy is given asEsep(λ) = H(qCmax(λ), 0, λ). The energy level surface Esep(λ) = {z|H(z, λ) =

Esep(λ)} acts as the separatrix creating a division between the topologically different regions of
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Figure 6.7: Eigenvalues {si}i=1,..,K of T is shown for the case with no fixed point E0 = 50, A =
14. The Perron-Frobenius eigenvalue sPF = 1 is highlighted with a red circle. Total K = 100
eigenvalues are plotted. The observed number of eigenvalues in the plot appear less than K due
to degeneracy and near degeneracy of eigenvalues. Eigenvalues with |si| ≈ 1 correspond to the
metastable modes of the dynamics that take.

the phase space [70].

Now, we choose the energyE0 and corresponding action I0, such thatEad(λ(t)) > Esep(λ(t))

at any time t (See Appendix. 6.5 for the details of calculation of Ead(λ(t))). This condition en-

sures that we are always in the libration region of phase space and throughout the variation of

the control parameter λ(t), no change in phase space topology takes place for the dynamics un-

der consideration. The fast-forward potential is calculated using standard methods [77] for the

Hamiltonian given in Eq. (6.16) (see Appendix. 6.6).
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Figure 6.8: Eigenvalues {si}i=1,..,K of T is shown for the case with fixed pointsE0 = 50, A = 18.
The Perron-Frobenius eigenvalue sPF = 1 is highlighted with a red circle. Total K = 100
eigenvalues are plotted. The observed number of eigenvalues in the plot appear less than K due
to degeneracy and near degeneracy of eigenvalues. Absence of eigenvalues with |si| ≈ 1 implies
that the dynamics relaxes to the stationary state quickly. Eigenvalues are real indicating absence
of the cyclic modes in the dynamics.
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6.4.2 Discussion: preserved energy shell as a heteroclinic connection and in-

variant distributions

We investigate the properties of the angle map ΘFF
T,[I0]

and corresponding evolution of dis-

tributions on the energy shell under fast-forward Floquet driving for two sets of parameters that

show qualitatively different types of behaviors. Fig. 6.1 shows the evolution of the energy shell

En to En+1 corresponding to the adiabatic energy E0 = 50 under the evolution by the Hamilto-

nian HFF for one period T = 2τ , with τ = 1.0, A = 14. The corresponding angle map ΘFF
T,[I0]

is shown in the Fig. 6.2. Similarly the energy shell evolution and the corresponding angle maps

for the parameters A = 18, E0 = 50 are shown in Fig. 6.3 and Fig. 6.4. The time integration

of the Hamiltonian dynamics are performed with a fourth order symplectic integrator [120]. We

see that in the case of A = 14 (Fig. 6.2) there is no fixed point in the map ΘFF
T,[I0]

, whereas for

A = 18 (Fig. 6.4), two fixed point θa and θr are created through a tangent bifurcation [73]. θa is

an attractive fixed point and, θr is a repulsive fixed point. Now, if we consider the corresponding

two dimensional map M̃FF
T [I0] or equivalently MFF

T [I0] for E0 = 50, (and λ(t) with A = 18

and τ = 1.0) we can see that any randomly sampled point on the energy shell for E0 = 50, will

approach the attractive fixed point za in the phase space corresponding to the angle variable θa,

as the number of iterations of the map n → ∞. Similarly any randomly sampled point on the

energy shell E0 = 50 will approach to the the phase space fixed point zr which corresponds to

angle variable θr when iterated by the inverse map MFF
T [I0]

−1 when n → ∞. Hence, the points

on the energy shell E0 = 50 here act as the stable manifold W s(za) for the fixed point za and as

an unstable manifold W u(zr) for the fixed point zr [73]. Hence the energy shell corresponding to

E0 = 50 for H here, has been converted to a heteroclinic connection [73], through the applica-
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tion of the fast-forward potential UFF . A similar creation of a heteroclinic connection has been

discussed in Ref. [121] for a particle on a ring system in the context of an Hamiltonian erasure.

Now, we discuss the evolution of a probability distribution on the energy shell under peri-

odic driving following the theory presented in Secs. 6.3.3 and 6.3.4. We discretized the energy

shell into uniform K = 100 bins in the angle variable. The transition matrix T and the evolu-

tion of the probability vector P⃗n, for an initial distribution of microcanonical measure (uniform

distribution in angle variable), is shown in Fig. 6.5 and Fig. 6.6 for dynamics with no-fixed point

(A = 14) and with fixed point (A = 18) respectively. For A = 18, in Fig. 6.6, we see that the dis-

tribution P⃗n approaches the invariant distribution P⃗s where only the bin with the attractive fixed

point θa is populated whereas for A = 14, in Fig. 6.5 we see all the bins have some population

at the steady state. We also see that for the case with the fixed point A = 18, the distribution P⃗n

converges to P⃗s rapidly compared to the case without the fixed point A = 14. This can be un-

derstood by looking at the eigenspectrum of the transition probability matrix T shown in Fig. 6.7

and Fig. 6.8. For A = 14, we find there are many eigenvalues with |si| ≈ 1 (see Fig. 6.7), corre-

sponding to metastable modes that take many iterations to decay, and the complex nature of the

eigenvalues implies the cyclic nature of these metastable modes, whereas for A = 18 we find that

the eigenvalues with non-zero |si| have eigenvalues that are real and lie in (0, 1) but not close to

1 (see Fig. 6.8), implying the existence of non-cyclic transient structures [119].
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6.5 Appendix: Calculation of the adiabatic energy

For the parameter-dependent Hamiltonian H(q, p, λ), the volume enclosed by the energy

shell E is given as

Ω(E, λ) =

∫ ∞
−∞

∫ ∞
−∞

dq′dp′ θ [E −H(q′, p′, λ)] , (6.37)

For an infinitesimal change λ → λ+ δλ and E → E + δE, with the constraint of volume phase

space area preservation, Ω(E, λ) = Ω(E + δE, λ + δλ), we can write the cyclic rule for partial

derivatives as (
∂E

∂λ

)
Ω

= − (∂Ω/∂λ)E
(∂Ω/∂E)λ

(6.38)

Now we introduce the notation Σ(E, λ) for the energy differential of the phase space area Ω(E, λ)

at a fixed λ:

Σ(E, λ) =

(
∂Ω

∂E

)
λ

=

∫ ∞
−∞

∫ ∞
−∞

dq′dp′ δ [E −H(q′, p′, λ)] (6.39)

Thus we can rewrite Eq. (6.38) as

(
∂E

∂λ

)
Ω

= − 1

Σ(E, λ)

[
∂

∂λ

∫ ∞
−∞

∫ ∞
−∞

dq′dp′ θ [E −H(q′, p′, λ)]

]
=

1

Σ(E, λ)

∫ ∞
−∞

∫ ∞
−∞

dq′dp′ δ [E −H(q′, p′, λ)]

(
∂H(q′, p′, λ)

∂λ

)
=

〈
∂H(q′, p′, λ)

∂λ

〉(µ)

Ead(λ)

,

(6.40)

where ⟨...⟩(µ)
Ead(λ)

stands for the microcanonical average on the energy-shell corresponding to the

adiabatic energyEad(λ). Eq. 6.40 can be viewed as a classical analogue of the Feynamn-Hellman

theorem of quantum mechanics. Now if the initial value of λ is λ0, and the adiabatic energy is
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Ead(λ0) = E0, we can use the equation above to solve an initial value problem to obtain the

adiabatic energy Ead(λ) at any arbitrary λ:

Ead(λ) = E0 +

∫ λ

λ0

dλ′
〈
∂H(q, p, λ)

∂λ

〉(µ)

Ead(λ′)

. (6.41)

Since we are considering a one-degree-of-freedom system, we can estimate the microcanonical

average
〈
∂H(q′,p′,λ)

∂λ

〉(µ)
Ead(λ)

by calculating the time-average of the observable ∂H(q′,p′,λ)
∂λ

by evolv-

ing a trajectory [120] for one period, under the frozen Hamiltonian H(q′, p′, λ) = Ead(λ). Now

for the double well potential given in Eq. (6.35), we have
〈
∂H(q′,p′,λ)

∂λ

〉(µ)
Ead(λ)

= ⟨q′⟩(µ)
Ead(λ)

, and we

estimate Ead(λ + dλ) by calculating the time average of the position of the particle by evolving

a trajectory for every of Ead(λ) and then use an Euler update:

Ead(λ+ dλ) = Ead(λ) + ⟨q′⟩(µ)
Ead(λ)

dλ (6.42)

for λ in the range [A,−A].

6.6 Appendix: Calculation of the flow fields

For the calculation of the flow fields ã(q, λ) and ṽ(q, λ), we use the constructions pre-

sented in Ref. [77]. For a given value of λ, we first calculate the Ead(λ) using the method

discussed in Appendix. 6.5. Once Ead(λ) is obtained, we find the left turning point qLad(λ) =

minq′{q′|H(q′, p′, λ) = Ead(λ)} for the adiabatic energy shell H(q, p, λ) = Ead(λ). Now we
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calculate the function

S(q, λ) = 2

∫ q

qLad(λ)

dq′
√

2(Ead(λ)− U(q′, λ)) (6.43)

for a set of L + 1 uniformly spaced points q = qk, where k = 0, .., L, with q0 = qLad(λ) and

qL = qRad(λ) = maxq′{q′|H(q′, p′, λ) = Ead(λ)} and for a fixed value of λ. The corresponding

values of S(q, λ) at these points are given as Sk = S(qk, λ). We now evaluate the function

q(S, λ) for M + 1 uniformly spaced points {Sm}m=0,..,M where S0 = 0 and SM = 2πI0 by

nearest-neighbor interpolation with the data set {(Sk, qk)}k=0,..,L. We denote the value of q(S, λ)

for {Sm} by {q̃m}. The flow fields at q̃m are defined as

ṽ(q̃m, λ) =
dq̃m
dλ

, (6.44)

ã(q̃m, λ) =
d2q̃m
dλ2

=
∂ṽ

∂q
ṽ +

∂ṽ

∂λ
. (6.45)

Now we repeat this set of calculations for N + 1 values of uniformly spaced points λ = λn

which go from −A to A to evaluate ṽ and ã over a grid of values (qm, λn) with m = 0, ..,M

and n = 0, .., N . We then calculate any arbitrary value of ṽ and ã for any given (q, λ) by

interpolation using these data sets, where we use nearest-neighbor interpolation for the q axis and

linear interpolation for the λ axis. For our calculations, we took L = M = 4999 and N = 1999.
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For time integration of the system, we calculate the explicit time-dependent flow field a(q, t) as

a(q, t) =



λ̈(t)ã(qLad(λ(t)), λ) + λ̇(t)ṽ(qLad(λ(t)), λ), q < qLad(λ(t))

λ̈(t)ã(q, λ) + λ̇(t)ṽ(q, λ), q ∈ [qLad(λ(t)), q
R
ad(λ(t))]

λ̈(t)ã(qRad(λ(t)), λ) + λ̇(t)ṽ(qRad(λ(t)), λ), q > qRad(λ(t)),

(6.46)

where we have taken the flow fields to be the same as at the boundary turning points when q is

outside the energy shell.

6.7 Appendix: Numerical construction of the angle map ΘFF
T,[I0]

To construct the angle map ΘFF
T,[I0]

we generate a set of M points distributed under the

microcanonical measure for the Hamiltonian H(q, p, λ(0)) at the energy shell corresponding to

energy E0. This is done by taking an initial condition on the energy shell E(0) and evolving

it under the frozen Hamiltonian H(q, p, λ(0)) by a 4th order symplectic integrator [115, 120]

while recording the coordinates z(j)0 ≡ (q
(j)
0 , p

(j)
0 ) of the evolving point at times tj = (jT/M) for

j = 0, ...,M − 1. The set S0 = {z(j)0 }j=0,...,M−1 are uniformly distributed in the angle variable,

and the corresponding angle coordinate for z(j)0 is given as θ(j)0 = 2πj/M . Now we evolve the

points in the set S0 from t = 0 to t = T under the time-dependent Hamiltonian HFF (q, p, λ(t))

using the symplectic integrator to obtain a new set of points S1 = {z(j)1 }j=0,...,M−1, where z(j)0

has been mapped to z(j)1 under MFF
T,[I0]

. We find the approximate value of the angle coordinate

θ
(j)
1 by locating the point in S0 that is closest (in the sense of Euclidean distance in phase space)

to the point z(j)1 . Say, we find that the point z(j
∗)

0 from S0 is closest to the point z(j)1 ; and z(j
∗)

0

has the corresponding angle coordinate value θ(j∗)0 . For large enough M approximate that z(j
∗)

0
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and z(j
∗±1)

0 will be co-linear and we approximate the value of θ(j)1 by linear interpolation using

the points {(z(j
∗)

0 , θ
(j∗)
0 ), ((z

(j∗±1)
0 , θ

(j∗±1)
0 )}. We repeat this calculation to the angle coordinates

{θ(j)1 } for all the points in the set S1. Now, we construct the map ΘFF
T,[I0]

numerically by using

a smooth spline interpolation from the angle coordinate pairs in the set {(θ(j)0 , θ
(j)
1 )}. Once the

smooth map ΘFF
T,[I0]

is obtained, we calculate its derivative function ∂ΘFF
T,[I0]

and also the inverse

function θ−1f numerically.
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Chapter 7: Future directions

7.1 Stochastic, quantum and information thermodynamics

In Chapter 2 of this thesis we presented the formalism of feedback-control in continuously

monitored systems when the control parameter is obtained from the measurement signal follow-

ing Ref.[1]. The quantum and discrete stochastic case of the formalism have already been used

for different projects related to feedback-cooling of quantum system [122], entanglement genera-

tion [123] and thermometry [124]. In general this formalism can be used to study various devices

in the context of quantum and nanotechnology where measurement-based feedback control is

useful. Studying the corresponding stochastic and quantum thermodynamics of such systems is

also an interesting area of research. Investigations of the thermodynamics for systems modeled

under the QFPME framework of Ref. [1] on both the trajectory and ensemble-level pictures are

required for better applicability of the framework to practical problems in quantum technology.

Preliminary work related to the thermodynamics of QFPME can be found in [125]. Investigating

the energy contributions arising from each of the terms in the jump trajectory master equation

discussed in the Chapter 4 can give us interesting insights about trajectory level quantum thermo-

dynamics. Simulations from the Chapter. 4 (Ref. [3]) can be particularly useful for this.

A connection of Maxwell’s demon to quantum error corrections is discussed in Ref. [88]. It

will be interesting to see if the ideas related to the Maxwell’s demons discussed in this thesis can
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also be extended to problems related to quantum error corrections. Another possible research di-

rection could be studying different models of autonomous demons similar to the one discussed in

Chapter 5 in both classical and quantum contexts. Investigating quantum versions of autonomous

thermodynamic device might lead us to better understanding of how quantum correlations present

in an information reservoir can be harnessed for thermodynamic and computational applications.

The simple, two-state model presented in Chapter 3 required a perturbative analysis. Find-

ing similar toy models where QFPME is exactly solvable would also be an interesting project.

The feedback-control master equation for the classical case can be useful for analyzing

experimentally relevant information thermodynamic systems similar to the one discussed in

Ref. [126].

Classical Hamiltonian systems have been previously investigated in the context of informa-

tion thermodynamics in Ref. [17, 121]. In Chapter. 6 we explored the evolution of a distribution

function of angle variables when a system is being driven by periodically driven classical Hamil-

tonian system. Studying the change of entropy of the angle variable distribution under Floquet

dynamics can be interesting research avenue. Also connecting the ideas from shortcuts to adi-

abaticity to the inclusive Hamiltonian formalism of information processing [17] is also another

potential research direction.

Lastly, investigations on fluctuation theorems and for quantum Maxwell’s demons under

the measurement-based feedback framework is an active area of research. See Refs.[127, 128]

for discussions on thermodynamics of continuous measured quantum systems, which might be

useful starting point for further investigations.
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7.2 Chemical physics, biological physics and complex systems science

The classical cases (discrete and continuous) of the modelling framework presented in

Chapter. 2 can be particularly useful in the context of chemical and biological physics. Biological

and artificial molecular motors and chemical reaction networks are often modelled using discrete

state dynamics. Studying the effect of feedback-control on such systems with the consideration

of different measurement models can be an interesting area of research. Thus the discussions

presented in this thesis can be particularly useful for modelling different systems relevant to

chemical and biological physics. Relating these models to autonomous demons can give us better

understanding of information processing in such systems.

In the fields of ecology, network sciences, finance, system biology or more generally in

complex systems sciences interplay of stochasticity, measurement accuracy, and feedback-control

play a key role. Investigating different problems from these fields with the modelling frameworks

discussed in this thesis can give us fundamental insights about such complex systems. Efficiently

modelling the control of high dimensional dynamical systems with possibly chaotic behavior is

an active field of research in the field of control systems. Extension of the discussions presented in

this thesis to this problem could also be a potential avenue of research. Chapter. 5 is an example

of engineering of automated feedback control on a network system to achieve a desired task.

Further studies in this avenue will also be interesting [129].
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the classical adiabatic invariant. Phys. Rev. E, 95:032122, Mar 2017.

[78] Kurt Jacobs and Daniel A. Steck. A straightforward introduction to continuous quantum
measurement. Contemporary Physics, 47(5):279–303, 2006.

[79] K. J. H. Law, A. M. Stuart, and K. C. Zygalakis. Data assimilation: A mathematical
introduction, 2015.

[80] Takahiro Sagawa and Masahito Ueda. Nonequilibrium thermodynamics of feedback con-
trol. Phys. Rev. E, 85:021104, Feb 2012.

[81] A. Chantasri, J. Dressel, and A. N. Jordan. Action principle for continuous quantum
measurement. Phys. Rev. A, 88:042110, Oct 2013.

[82] Areeya Chantasri and Andrew N. Jordan. Stochastic path-integral formalism for continu-
ous quantum measurement. Phys. Rev. A, 92:032125, Sep 2015.

[83] Harold J. Kushner. On the differential equations satisfied by conditional probablitity den-
sities of markov processes, with applications. Journal of the Society for Industrial and
Applied Mathematics Series A Control, 2(1):106–119, 1964.
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