Correcting noisy quantum gates with shortcuts to adiabaticity

Abstract

Unitary quantum gates constitute the building blocks of Quantum Computing in the circuit paradigm. In this work, we engineer a locally driven two-qubit Hamiltonian whose instantaneous ground-state dynamics generates the controlled-NOT (CNOT) quantum gate. In practice, quantum gates have to be implemented in finite-time, hence non-adiabatic and external noise effects debilitate gate fidelities. Here, we show that counterdiabatic control can restore gate performance with near perfect fidelities even in open quantum systems subject to decoherence.

Publication
arXiv:2505.20000v1. DOI:10.48550/arXiv.2505.20000